
 Advanced search

Linux Journal Issue #53/September 1998

Features

Developing Imaging Applications with XIE by Syd Logan
Mr. Logan describes the X Image Extension and show us how to
use it—for the experienced C programmer.

Open Inventor by Robert Hartley
Mr. Hartley shows how to do interactive 3-D programming using
Open Inventor, Release 2, which he used to create the images
on our cover.

LibGGI: Yet Another Graphics API by Andreas Beck
The next generation fully portable graphics library

Porting SGI Audio Applications to Linux by David Phillips and Richard
Kent

This article describes the process of porting a variety of audio
applications from the SGI platform to the Linux operating
system.

Visualizing with VTK by James C. Moore
A look at a new tool for visualizations of scientific data—VTK, an
object-oriented visual toolkit.

News & Articles

Porting MS-DOS Graphics Applications by Jawed Karim
Are you hesitant about porting your favorite VGA MS-DOS
program to Linux? Using this tutorial and SVGALIB, porting will
truly become a matter of minutes.

A Tale of DXPC: Differential X Protocol Compression by Justin Gaither

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2998.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3007.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2279.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2374.html

Article about using Differential X Protocol Compression which
compresses X messages up to over 7:1.

Chess Software for Linux by Jason Kroll
Once there was a time when chess software for the home was
slow, weak and expensive. To find human opponents, you had to
go to your local chess club. Today, the situations is different.

LJ Interviews LDP's Greg Hankins by Marjorie Richardson
Migrating to Linux, Part 2 by Norman M. Jacobowitz and Jim Hebert

We continue with our look at converting an office from a
commercial operating system to Linux.

Reviews

SockMail by Noah Yasskin
UNIX Power Tools by Samuel Ockman
Managing AFS: Andrew File System by Daniel Lazenby
Discover Linux by Marjorie Richardson

WWWsmith

Updating Pages Automatically by Reuven M. Lerner

Columns

Letters to the Editor
From the Editor How Many Distributions? by Marjorie Richardson
Stop the Presses USENIX 1998 by Aaron Mauck

USENIX 1998 SSC's system administrator travels to New Orleans
and actually returns to tell us about it.

Take Command A Little Devil Called tr by Hans de Vreught
A Little Devil Called tr Here's a useful command for translating
or deleting characters in a file.

Linux Means Business Training on a Token Ring Network by
Charles Kitsuki

Training on a Token Ring Network Linux can provide technical
managers with cost-effective, reliable training tools

New Products
Kernel Korner Driving One's Own Audio Device by Alessandro
Rubini

Driving One's Own Audio Device In this article Alessandro will
show the design and implementation of a custom audio device,
paying particular attention to the software driver. The driver, as
usual, is developed as a kernel module. Even though Linux 2.2
will be out by the time you read this, the software described
here works only with Linux-2.0 and the first few decades of 2.1
versions.

Linux Gazette MUP: Music Publisher by Bob van der Poel
MUP: Music Publisher Here's a look at notation editors for
producing sheet music under Linux.

Best of Technical Support

Archive Index

https://secure2.linuxjournal.com/ljarchive/LJ/053/2510.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2963.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2963.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3042.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2933.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2575.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2913.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2973.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3060.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3035.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2992.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2563.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2615.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3034.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2997.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3056.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3036.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Developing Imaging Applications with XIE

Syd Logan

Issue #53, September 1998

Mr. Logan describes the X Image Extension and show us how to use it—for the
experienced C programmer.

In this article I'll introduce the X Image Extension (XIE), and illustrate how it
might be used by a C programmer to add image display support to a simple
application. The following assumptions are made about the reader:

• You are comfortable reading C language code.
• You are comfortable with (or at least have a basic understanding of) Xlib

development, e.g., creating windows, drawing text and graphics. Since the
example program uses Motif, some exposure to Xt and a widget set such
as Motif or Xaw would also be helpful, but is not required.

If you are new to X development, there are plenty of books that can be used to
get you started. Regarding X and Motif, my favorites include Introduction to the
X Window System by Oliver Jones (Prentice Hall), and the O'Reilly X Window
series. Volumes 1 and 2 of the O'Reilly series deal with Xlib. Volume 6 deals with
Motif.

Linux and XIE

I've been using XIE and Linux together since late 1994. At that time, I had to
build my own X server (an early beta version of X11R6) to support XIE, plus I
had to port the client library (libXIE.a) to Linux since an X environment that
supported XIE was not yet available in any of the Linux distributions. Now, all
currently available Linux distributions provide a more than adequate platform
for XIE client development, as well as the runtime support needed for clients
that use XIE.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

What is XIE?

In X, a client (i.e., an application) connects to an X server, which you can think of
as essentially nothing more than a display with a keyboard and a mouse
attached to it. The core X protocol provides all the functionality needed by a
client to produce a user interface on the server. Using the core X protocol, a
client can:

• Create, move and destroy windows.
• Render graphics and text into windows and off-screen pixmaps.
• Receive notification of events occurring on the server which are of interest

to the client. Such events include button presses, mouse movement,
keyboard presses, window exposure notification and so forth.

For most of you, the client and server are both running on the same machine,
i.e., on a single Linux system, but it doesn't have to be that way. The X Window
System protocol is designed so that communication between the client and
server can be carried out over a network connection, e.g., TCP/IP. (If run locally,
it is a local, i.e., AF_UNIX, connection.) Therefore, you can have the situation as
illustrated in Figure 1. There, the X server is my Linux machine at home. The
clock application and terminal emulator (xterm) are processes running on my
Linux machine locally. In addition, I have a PPP connection to my ISP (which is
running Solaris or some other Linux-wannabe) and within the xterm I am
executing a telnet session between my local machine and the ISP. The other
two windows (xiegen) display an application executing remotely on my ISP's
machine. This application is displaying its client windows on my Linux machine,
responding to keyboard and mouse events that occur on my Linux machine,
courtesy of the X protocol. Prior to executing the remote application, I needed
to set the DISPLAY environment variable to the IP address of my Linux machine
which acts as the server. Xlib (on the remote host) reads this variable on client
startup and uses its value to open a connection to the X server running on my
Linux machine. The :0 characters in the following line indicate a logical display
on the server:

$ typeset -x DISPLAY=123.45.67.89:0

Figure 1. Linux X Server Displaying Both Local and Remote Applications

Note that except for the screen, mouse and keyboard, the client generating
xiegen's output in Figure 1 is interacting with resources on the remote Solaris
host. If my remote client opens a file, /etc/passwd for example, it is opening /
etc/passwd on the Solaris host, not the Linux host.

In reality, running console-based UNIX or Linux applications from a dumb
terminal over an RS-232 connection has much in common with running UNIX or

https://secure2.linuxjournal.com/ljarchive/LJ/053/2259f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259f1.jpg

Linux applications from an X server over a network connection, except that
when using X, the graphics support is much better.

Additional functionality can be added by vendors to the core X protocol via
extension protocols. XIE is one example. Other extension protocols include the
Phigs graphics extension to X (PEX), and the shape extension, which allows X to
display non-rectangular windows. There are many other extensions; execute
the xdpyinfo command to take a look at which ones are supported by your X
server.

XIE is an extension that was released with the first version of X11R6 back in July
1994. XIE was developed in an attempt to provide clients with support in the
following areas:

• Transmission of image data between the client and the server (in either
direction)

• Image enhancement and manipulation
• Image display

The core X protocol provides only minimal support for the transmission,
manipulation and display of image data. Let's look at each of these areas in
more detail, and discuss what core X is missing with regard to imaging support,
and what XIE brings to the table.

Image Transmission

In order to display image data, the client must first transmit the image from the
client to the server. Encoding of image data, as well as efficiency of the transfer,
are the two main concerns addressed by XIE.

Core X requires clients to transmit image data using X-specific encoding. If a
client is working with JPEG image data, for example, it must decode the JPEG
image data and convert it to X-specific encoding before sending it to the server.
XIE, on the other hand, is capable of receiving and decoding image data
encoded in several popular image encodings, including JPEG Baseline and the
CCITT FAX encodings G31D, G32D and G42D. However, the list of encodings
supported by XIE may seem fairly restricted to some; GIF is not supported
because LZW has licensing issues associated with it, and PNG was not invented
prior to the latest release of XIE. Vendors are free to add to the list of supported
encodings. However, truly portable applications will support only encodings
defined by the protocol specification. XIE supports two encodings,
UncompressedSingle and UncompressedTriple, which can be used to transmit
uncompressed two-tone, gray-scale and color images. Clients can use these
encodings to send “raw” image data, or they can convert image data from an

unsupported encoding (e.g., LZW) to either of UncompressedSingle or
UncompressedTriple prior to transmission.

In terms of efficiency, an 8-bit 640x480 gray-scale image is around 2.3MB in
size, and a color version (24-bit, 640x480) is three times as large. Transmitting
such large amounts of data is expensive. Because XIE allows images to be
transmitted in an encoded form (e.g., JPEG), performance is increased, since
fewer bytes are sent between the client and server.

Once in the server, image data can be cached in a local image storage resource
called a photomap. Doing so considerably reduces the use of network
bandwidth in interactive imaging applications.

Image Enhancement and Manipulation

In core X, client manipulation of image data is performed at a very low level:
pixel values can only be read from or written to an image. Higher-level
operations, such as image scaling, image arithmetic and blending must be
implemented by the client utilizing these primitives. In addition, all
manipulations must be performed on the client side, with the resulting pixel
values transferred across the network from the client to the server after the
manipulation has been performed.

In XIE, image manipulation is performed entirely on the server side. If XIE
doesn't support a needed operation, it can be done on the client side. XIE
supports high-level operations that allow the client to:

• Improve the quality of the image data.
• Perform geometric operations such as scaling, axis-flipping and rotation.
• Prepare image data for display in a window belonging to a specific X Visual

class.

Interactive imaging applications are best implemented using a combination of
server-side processing and image caching with photomap resources.

Photoflos

The operations to be performed on image data, including image decode, image
manipulation and enhancement, and image display, are described by a data
structure called a photoflo. A photoflo is a directed acyclic graph (meaning it
can have no cycles) that consists of photoflo elements. Each photoflo element
in a photoflo graph performs a specific atomic operation, passing its result to
elements further downstream. Elements at the head of the photoflo are known
as import elements, and are used to read and decode image data sent to the
photoflo by the client. They also read image data directly from a photomap

resource if needed. Elements further downstream, called process elements,
perform image manipulation tasks. Export elements are used to route the
image data to a window, a photomap resource or back to the client and are
found at the end of a photoflo graph.

Figure 2. Photoflo Graph

Figure 2 illustrates a simple photoflo graph, one we will use later in our
example. The first photoflo consists of two elements, ImportClientPhoto (ICP)
and ExportPhotomap (EP). ImportClientPhoto is used here to read and decode
a JPEG image. ExportPhotomap reads the result from ImportClientPhoto and
stores it in a server-side resource called a Photomap. The arrow shows how
image data flows in the photoflo graph. Much more ambitious photoflos are
possible. To summarize, the rules involving photoflo topologies are:

• All paths in a photoflo must start with an import element, may be
followed by one or more process elements, and must end with an export
element.

• No cycles are allowed in a photoflo graph.

Techniques

As stated earlier, ImportClientPhoto reads image data sent by a client. The
client must specify to ImportClientPhoto the encoding of the image data to be
sent, and it must do this at the time the photoflo is being constructed. This is
done by specifying a technique constant as an argument to the function that is
used to add ImportClientPhoto to the photoflo graph—the photoflo element
convenience function. For example, to decode TIFF-PackBits-encoded image
data, the client passes the constant xieValDecodeTIFFPackBits as an argument
to XieFloImportClientPhoto. In addition, most techniques require a set of
technique parameters. These define more precisely how the technique will
carry out its task. Technique parameters are specified by passing a pointer to a
structure containing the needed information. XIElib provides convenience
functions that can be used to allocate and initialize these structures. Most
import, process and export elements support techniques and technique
parameters. In some cases, a default technique can be specified by the client. In
this situation, technique parameters are not supplied, as the server decides
upon appropriate defaults.

Parameters common to all techniques are supplied using arguments to the
photoflo element convenience function. For example, XieFloImportClientPhoto
takes width, height and levels arguments. The levels argument is an array of
three long integers that specifies, per band, the depth of the image and how
many distinct colors it can represent. If we are dealing, for example, with a 24-
bit color image, levels would be set to {256,256,256}.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2259f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259f2.jpg

Import Elements

These read data from the client or from server resources. Import elements are
how image data is made available to a photoflo for processing. The import
elements supported by XIE are shown in the sidebar “Import Elements”.

Process Elements

These read image data from elements earlier in a photoflo graph and
manipulate the image data before passing it along to downstream elements.

Most process elements are able to handle both SingleBand (gray scale or two-
tone) or TripleBand (color) image data transparently. Some process elements
allow only one input, some operate on one or two inputs, and one
(BandCombine) requires three SingleBand inputs. The output of a process
element is image data. For example, Arithmetic takes two images, or an image
and a constant, and adds them together pixel-by-pixel; the result is its output.
Process elements supported by XIE are shown in the sidebar “Process
Elements”. Export elements supported by XIE are shown in the sidebar “Export
Elements”.

Handling Image Data

One thing lacking in XIE is client-side support for the handling of image file
formats. An image file format defines how image data is stored on disk. For
example, JPEG-encoded image data can be stored in TIFF or JFIF formatted files.
Why are file formats needed? They organize the way image data, palettes and
header information describing image width, height and depth are stored in a
file. The problem with XIE is that clients need to find out what a particular file
contains and provide the code needed to read image data and header
information from the file. Once again, header information is needed because
the client must tell XIE about the image data it will be sending to
ImportClientPhoto.

The Internet contains good resources for dealing with this problem. See the
XIElib example code section of my home page (the URL is given at the end of
this article) to download example code dealing with this issue. The example
code is based upon two libraries, supplied along with my examples, and
available elsewhere on the Net. The first, libtiff, can be used to read header
information and encoded image data from TIFF files. The other library can be
used to extract header information and encoded image data from JFIF (JPEG)
format files.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2259s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259s3.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259s3.html

An Example: Employee Database

Let's turn to the specifics of adding image support to a fictitious application.
Figure 3 illustrates a simple Motif client I will develop in the remainder of this
article. The example client reads the current directory for files ending with
.emp. Information about a specific employee is stored in these files. For
example:

123
12
Barney Smith
1124
Boogie Woogie Avenue
Bedrock
CA
91911
Individual Contributor
32000
barney.img

The first line is the employee number (123). The second is the department
number (12). The line immediately preceding the last is his salary (32000). The
last line is a file containing a 256x256 JPEG image of the employee. For
simplicity's sake, I used fixed width and height images to avoid the need to
perform scaling. This is not because XIE doesn't support scaling. XID's
Geometry element, which is used to perform scaling, would require its own
article to describe fully.

Figure 3. Motif Client Displaying Employee Picture

In Figure 3, the employee numbers are displayed in a scrolled list on the left-
hand side of the GUI. As the user clicks on an employee number, the GUI
displays the employee's picture and other data read from the file.

In the following code, I'm going to ignore issues related to the reading of
records and the Motif GUI. If you have specific questions about these areas, I'd
be glad to answer them by e-mail. Think of our task as follows: we have a Motif
application that does everything described above except it lacks the ability to
display the employee's picture. We've added the Motif code needed to provide
an area into which the image is to be displayed (using a DrawingArea widget).
Our task is to add the image display feature to the application, and we are
required to come up with a solution that uses XIE.

All XIE client applications must include the file XIElib.h using the following
preprocessor directive:

#include <X11/extensions/XIElib.h>

https://secure2.linuxjournal.com/ljarchive/LJ/053/2259f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2259f3.jpg

The following include file is my own creation, and is supplied on my web site
with the example code. It is needed to define data structures used by the
photoflo backend code that I will describe later in the article.

#include "backend.h"

Before main, a couple of static globals are also declared:
static XieExtensionInfo *xieInfo;
static XiePhotospace photospace;

The first thing an XIE application must do is establish a connection to the XIE
extension.

This is done after connecting to the display. In our main application, just after
we establish the connection to the server using XOpenDisplay or some
equivalent, we connect to XIE using the following code:

if (!XieInitialize(display, &xieInfo)) {
fprintf(stderr,
 "XIE not supported on this display!\n");
exit(1);
}

The variable xieInfo is a handle that represents the connection to XIE. Its fields
contain information about the capabilities of XIE on the server pointed to by
display. Most clients need not concern themselves with the contents of the
structure, except when dealing with XIE errors and events (which I won't discuss
here).

Next, we declare a photospace. This represents a context in which immediate
photoflos can execute on the server. Immediate photoflos are created and
executed using a single XIElib API call named XieExecuteImmediate. After an
immediate photoflo executes, it is destroyed by the X server. A stored photoflo,
on the other hand, persists on the server until explicitly destroyed, or the
creating client breaks the server connection and no other clients are
referencing the photoflo. Stored photoflos can be executed more than once.
Our example client needs a photospace, since we are executing immediate
photoflos in our example. This is done by calling XieCreatePhotospace:

photospace = XieCreatePhotospace(display);

Before we call XtAppMainLoop to handle the GUI of the application, a call is
made to a routine we provide named LoadEmp. LoadEmp reads all of the .emp
files found in the current directory and stores them in a linked list of EmpDat

structures. LoadEmp also calls a routine, LoadImage, passing a pointer to the
EmpDat structure containing the name of the image data file. LoadImage reads
the file and stores the image data on the server, using XIE. The image data read
by LoadImage is stored in JFIF files and is encoded as JPEG Baseline, an

encoding supported by XIE. LoadImage supports both color and gray-scale JPEG
images.

Let's take a close look at LoadImage. What LoadImage does is the following:

• It creates a Photomap resource on the X server. The Photomap resource
will be used to hold or cache the image data on the server so that we
transport it over the network to the X server only once. The image data
will be stored in the Photomap resource in an uncompressed format.

• It reads the JPEG image from the specified file, obtaining the image data
as well as the header information, i.e., width, height, levels and number of
bands (gray scale or color).

• It constructs a photoflo to receive the image data from the client, decode
it and store it in the Photomap resource. The photoflos used to handle
color image data and gray-scale image data differ. Both photoflos use
ImportClientPhoto to receive and decode the image data, and
ExportPhotomap to store the result in the Photomap resource. If the
image is TripleBand (color), we add a third element, ConvertToRGB,
between ImportClientPhoto and ExportPhotomap to convert the image
data from the YCbCr color space to the RGB color space. All image data
displayed in a window must correspond to the RGB color space, since
video displays are RGB devices.

• It executes the photoflo and sends the image data.
• It stores the resource ID of the Photomap resource in the EmpDat

structure passed by reference to LoadImage so that we can make use of it
later. We also record the number of levels in the JPEG image (3 or 1); this
is needed to determine how to generate pixel data from the image data
prior to display.

Here is the LoadImage code:

int
LoadImage(EmpDat *newp)
{
int floSize, size, decodeTech, floId = 1, idx;
Bool notify;
short w, h;
char d, l, *bytes;
XieConstant bias;
XiePointer decodeParms;
XiePhotoElement *flograph;
XieYCbCrToRGBParam *rgbParm = 0;
XieLTriplet width, height, levels;

Now we create a photomap resource and store the result in newp for later use.
if ((newp->pmap = XieCreatePhotomap(display))
 == (XiePhotomap) NULL) return(1);

GetJFIFData is a routine available on my web site that reads JFIF files for image
data and header information. We use it next:

if ((size = GetJFIFData(newp->image, &bytes,
 &d, &w, &h, &l)) == 0) {
XieDestroyPhotomap(display, newp->pmap);
fprintf(stderr,
 "Problem getting JPEG data from %s\n",
 newp->image);
return(1);
}
newp->bands = l;

This example only supports 8-bit gray-scale or 24-bit color (8,8,8) image data.
if (d != 8) {
XieDestroyPhotomap(display, newp->pmap);
fprintf(stderr, "Image %s must be 256 levels\n",
 newp->image);
return(1);
}

XieAllocatePhotofloGraph allocates a photoflo graph which we then fill in with
elements. If we are dealing with gray-scale image data (l == 1), we need only
two elements. If we are dealing with color image data (l == 3), we need a third
element to convert the image from YCbCr color space to RGB.

floSize = (l == 3 ? 3 : 2);
flograph = XieAllocatePhotofloGraph(floSize);

Set up the width, height, and levels arguments to XieFloImportClientPhoto. This
information was obtained by reading the header information from the JFIF file.

width[0] = width[1] = width[2] = w;
height[0] = height[1] = height[2] = h;
levels[0] = levels[1] = levels[2] = 256;

The image, SingleBand or TripleBand, is JPEG Baseline, so specify the
corresponding decode technique and allocate the needed technique
parameters. The decode technique and technique parameters are also passed
to XieFloImportClientPhoto.

decodeTech = xieValDecodeJPEGBaseline;
decodeParms = (char *) XieTecDecodeJPEGBaseline(
 xieValBandByPixel, xieValLSFirst, True);

Now we can add ImportClientPhoto as the first element of the photoflo graph.
idx = 0;
notify = False;
XieFloImportClientPhoto(
&flograph[idx], /* address of element
 * in photoflo graph */
(l == 3 ? xieValTripleBand : xieValSingleBand),
 /* data class */
width, /* width of each band */
height, /* height of each band */
levels, /* levels of each band */
notify, /* send DecodeNotify event? */
decodeTech, /* decode technique */
decodeParms /* decode parameters */
);
idx++;

If the image is color, then convert from YCbCr to RGB. XieTecYCbCrToRGB is
used to allocate the technique parameter needed by the YCbCrToRGB

technique. Both the allocated technique parameters and the technique are

passed to XieFloConvertToRGB, which is used to add the ConvertToRGB
element to the photoflo graph. It is beyond the scope of this article to discuss
the arguments and technique parameters used, but the code below should
work for most color JPEG Baseline images encountered by an application.

if (l == 3) {
bias[0] = 0.0;
bias[1] = bias[2] = 127.0;
levels[0] = levels[1] = levels[2] = 256;
rgbParm = XieTecYCbCrToRGB(levels,
 (double) 0.2125, (double) 0.7154,
 (double) 0.0721, bias, xieValGamutNone,
 NULL
);
XieFloConvertToRGB(&flograph[idx], idx,
 xieValYCbCrToRGB, (XiePointer) rgbParm
);
idx++;
}

The final element in the photoflo is ExportPhotomap. The encode technique
used is xieValEncodeServerChoice. Given the photoflo we are dealing with, this
should cause XIE to store the image in an uncompressed, canonical format
within the Photomap resource.

XieFloExportPhotomap(&flograph[idx], idx,
 newp->pmap, xieValEncodeServerChoice,
 (XiePointer) NULL);
idx++;

Now that we have a photoflo graph, we can send it to the server and start its
execution by calling XieExecuteImmediate:

XieExecuteImmediate(display, photospace, floId,
 False, flograph, floSize);

Once execution starts, the photoflo will be blocked, awaiting image data from
the client. The XIElib function that sends this data is XiePutClientData, and it can
be used to send any client data (ROIs, LUTs and images) to the ImportClient
element awaiting the data. PumpTheClientData is a utility function I wrote (also
available on my web site) that is a wrapper around XiePutClientData and makes
the process of sending data to an ImportClient element a little easier.

PumpTheClientData(display, floId, photospace, 1,
 bytes, size, sizeof(char), 0, True);

At this point, the image data has been read by the photoflo, decoded,
converted to RGB color space (if it was color) and stored in the server-side
Photomap cache for later use. In addition, the photoflo we executed has been
destroyed by the server. Now, we need to free the memory allocated to the
photoflo graph and other items in the above code.

if (rgbParm)
XFree(rgbParm);
free(bytes);
XieFreePhotofloGraph(flograph, floSize);
XFree(decodeParms);
return(0);
}

We need code that will transfer the image data from a Photomap resource to a
window. Two different situations will cause the client to perform the actual
drawing:

1. The user selects an employee number from the scrolled list.
2. The DrawingArea widget's window becomes exposed, and server backing

store is not enabled.

Let's write the code to handle the first case. After we created the scrolled list
widget, we registered with the widget a callback to be invoked whenever the
user selects an item in the list:

XtSetArg(args[0], XmNselectionPolicy,
 XmSINGLE_SELECT);
list_w = XmCreateScrolledList(rowcol,
 "scrolled_list", args, 1);
XtAddCallback(list_w, XmNsingleSelectionCallback,
 ListCallback, NULL);
XtManageChild(list_w);

Thus, when the user clicks on an item, Xt will call the function ListCallback.
Inside of ListCallback, we perform the following tasks:

• Determine which employee was selected, and obtain a pointer to the
corresponding EmpDat structure.

• Update the text fields in the dialog with information about the employee
(e.g., name, department, address and salary).

• Call a function to display the employee image in the window owned by the
DrawingArea widget.

The following is my implementation of ListCallback:
static void
ListCallback(Widget list_w, XtPointer client_data,
 XmListCallbackStruct *cbs)
{
char *choice, buf[32];
EmpDat *p;
/* Read the list item, and then look it up in our
 * linked list of employee records */
XmStringGetLtoR(cbs->item, charset, &choice);
p = FindChoice(choice);
XtFree(choice);
/* If we have a match, display the text
 * information in the dialog */
if (p != (EmpDat *) NULL) {
/* first do the text fields */
sprintf(buf, "%d", p->code);
XmTextFieldSetString(codeT, buf);
XmTextFieldSetString(nameT, p->name);
XmTextFieldSetString(streetT, p->street);
XmTextFieldSetString(cityT, p->city);
XmTextFieldSetString(stateT, p->state);
XmTextFieldSetString(zipT, p->zip);
XmTextFieldSetString(descT, p->desc);
sprintf(buf, "%ld", p->salary);
XmTextFieldSetString(salaryT, buf);
/* Go and display the image. gDrawP is discussed
 * later */
gDrawP = p;
DisplayPhotomap(p);

}
}

The routine that does the real work associated with transferring the image data
from the photomap to a window is DisplayPhotomap. It is a separate routine
(i.e., not part of ListCallback), because we need to call it when handling window
exposures.

void
DisplayPhotomap(EmpDat *p)
{
XiePhotoElement *flograph;
Visual *visual;
Backend *backend;
int floId = 1, screen, idx, floSize, beSize;
Display *display;
if (p == (EmpDat *) NULL) return;

The first thing we do is generate a backend for the photoflo we are
constructing. A backend is a set of process elements, plus ExportDrawable or, if
the image is two-toned, ExportDrawablePlane. The purpose of these elements
is to prepare the image data for display in the specified window. The backend is
responsible for the following:

• Ensuring that the levels attribute of the image corresponds to the target
window. For example, if the image is 8-bit color, and we are displaying to a
1-bit StaticGray window, we must insert a Dither element into the backend
to reduce the levels of the image from 256 to 2. Dither is the best way to
preserve the contents of the image in these cases. Other process
elements can do the job but will mangle the result quite a bit. If the levels
attribute of the image and the capabilities of the window do not match,
XIE will generate an error and abort the photoflo.

• Converting image intensity values to color-map index data. From Xlib
programming, recall code such as the following which allocates the color
red from a specific color map:

 Display *display; /* server connection */
 int screen; /* usually 0 */
 Colormap cmap; /* resource ID of color map */
 XColor color; /* holds info about a color */
 cmap = DefaultColormap(display, screen);
 color.red = 65535;
 color.green = color.blue = 0;
 XAllocColor(display, cmap, &color);

Now, we can use the returned color to draw, for example, a red line in a
window by setting the foreground color of the GC we associate with the
window to the pixel value returned by XAllocColor:

 XSetForeground(display, GC, color.pixel);
 XDrawLine(display, window, gc, x1, y1, x2,
 y2);

Thus, when we want to draw a line of a particular color in a window, we
actually draw to the window the pixel value which indexes the color in the
color map associated with the window. The same thing has to happen

when displaying images. X expects our window to contain pixel values.
The server (hardware) takes these pixel values and converts them to
colors that we see as the screen is refreshed. A convenient way to map
colors in our image to a set of pixel values is to add a ConvertToIndex

element to the photoflo backend. ConvertToIndex's job is to translate all
of the color values into pixels and allocate any cells needed in the color
map.

• The final task of the backend is displaying the image in the window. If the
image is gray scale or color, we add an ExportDrawable element as the
last element of the backend. If the image is two-toned, then we use
ExportDrawablePlane.

In order to generate the backend, I make use of routines available on my web
site. InitBackend takes information about the image and target window and
determines which elements are needed to complete the backend processing. It
also returns the number of elements needed, so that we can allocate space for
them in the photoflo graph.

display = XtDisplay(drawingArea);
screen = DefaultScreen(display);
visual = DefaultVisual(display, screen);
if (p->bands == 1)
 backend = (Backend *)
 InitBackend(display, screen,
 visual->class, xieValSingleBand,
 1<<DefaultDepth(display, screen),
 -1, &beSize);
else
 backend = (Backend *) InitBackend(display,
 screen, visual->class,
 xieValTripleBand,
 0, -1, &beSize);
 if (backend == (Backend *) NULL) {
 fprintf(stderr,
 "Unable to create backend\n");
 exit(1);
 }

Now that we have taken care of the backend, we allocate the photoflo graph
and add ImportPhotomap as its first element. We pass to
XieFloImportPhotomap the resource ID of the photomap from which the image
should be read. This resource ID is stored in the EmpDat structure passed into
this routine as an argument.

floSize = 1 + beSize;
flograph = XieAllocatePhotofloGraph(floSize);
idx = 0;
XieFloImportPhotomap(&flograph[idx],
 p->pmap, False);
idx++;

Next, a call is made to InsertBackend, which adds the backend elements to the
photoflo graph.

if (!InsertBackend(backend, display,
 XtWindow(drawingArea), 0, 0, gc,
 flograph, idx)) {
fprintf(stderr, "Unable to add backend\n");
exit(1);
}

Now that we have a photoflo graph, we call XieExecuteImmediate, which is
responsible for transmitting the photoflo to the server and executing it. Since
the photoflo is immediate, it will be destroyed by the server once execution
completes. At this point, the image data in the photomap should be visible to
the user in the DrawingArea widget's window.

XieExecuteImmediate(display, photospace, floId,
 False, flograph, floSize);
XieFreePhotofloGraph(flograph, floSize);
CloseBackend(backend, display);
}

The final routine to discuss is RedrawPicture. This simple routine is a callback,
registered with the DrawingArea widget instance, to be called whenever the
DrawingArea widget's window receives an expose event. Recall that ListCallback
stored the pointer to the EmpDat structure corresponding the user's list
selection to a global variable named gDrawP. Thus, gDrawP holds a pointer to
the currently displayed employee data. All we need to do in RedrawPicture is
check whether gDrawP points to valid data; if so, we know the user had
previously made a selection. Now, we can call DisplayPhotomap, passing
gDrawP as an argument, to render the image to the window.

static void
RedrawPicture(Widget w, XtPointer
client_data, XmDrawingAreaCallbackStruct *cbs)
{
if (gDrawP != (EmpDat *) NULL) DisplayPhotomap(
 gDrawP);
}

The Complete Example Code

The complete source code for the example discussed in this article, and the
library routines needed to build it, can be found at my home page located on
the Internet at http://www.users.cts.com/crash/s/slogan/. This article describes
just one of over 40 example clients you will find there. My book on XIElib
programming, Developing Imaging Applications with XIElib, published by
Prentice Hall, goes into much greater detail than I could provide in an article of
this length. More information on my book can be found on my web site as well
or at http://www.prenhall.com/. If you have any questions about XIE, this article,
my other examples, or for that matter X11, please feel free to drop me an e-
mail.

Depending upon the phase of the moon, you'll find Syd developing software for
Macintosh (Apple's MacX 1.5 and 2.0), the X Window System (Z-Mail for UNIX)
and even Windows NT (NetManage's NFS client). He was a member of the team
that produced the XIE example implementation for X11R6. In his spare time he
enjoys buzzing around the San Diego coastline in Cessnas and Piper Archer IIs.
He can be reached at slogan@cts.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Open Inventor

Robert Hartley

Issue #53, September 1998

Mr. Hartley shows how to do interactive 3-D programming using Open Inventor,
Release 2, which he used to create the images on our cover.

Open Inventor is a powerful 3-D graphics library that allows the user to create
interactive 3-D applications quickly and easily. It adds object-oriented
programming to OpenGL, the most widely available standard 3-D API. This layer
of object-oriented abstraction does not come at the expense of losing control
of our applications—all the power of programming directly with OpenGL is still
available.

One measure of how much detail is needed in order to get things done is the
size of the standard reference books. My personal top five essential books on
graphics programming are listed in Resources. To be functional in Inventor
programming, the most essential one is Josie Wernecke's The Inventor Mentor.

What is in it?

Inventor organizes its data into a scene graph, a structured collection of
graphical objects stored as nodes. These nodes can represent many things,
from geometric primitives, engines, lights and material properties to
transformation nodes that can include scaling, rotation and translation
properties.

Inventor efficiently handles many of the graphic operations which would
otherwise have to be coded by the user. It has facilities for scene graph
management, picking, viewing and user interaction. The standard viewers come
in five basic flavors: fly, walk, plane, examiner and render area.

Editors for materials, directional lights, transformations and other node
properties can be attached to the scene graph, and changes rendered

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

interactively in any of the standard editor viewers. These editors come in
source form, so they can be customized to suit the user's specific needs.

Where did it come from?

Open Inventor was developed by Silicon Graphics (SGI), a company that builds
graphical workstations. It is the second version of Iris Inventor, which
encapsulated IrisGL, from which OpenGL is derived. The Inventor/GL API is
richly featured and has been maturing for about a decade now. It has proven
worthy of the time and effort needed to learn it. Although there is a lot to learn,
much can easily be done even by a newbie, as will be demonstrated shortly.

Template Graphics Software (TGS) has a source license to Open Inventor and
OpenGL. TGS takes care of porting and distributing Inventor to Linux and other
UNIX platforms and Windows NT/95, enhancing and enriching it along the way.
In September 1997, the first version of Inventor for Linux appeared on the TGS
Internet site (see Resources).

What is the VRML connection?

The Inventor file format was chosen as the basis for the VRML version 1.0 file
format, commonly distinguished by its .WRL extension. Many of the Inventor
nodes were used directly in VRML, and it has often been referred to as
“Inventor with all of the good stuff ripped out”. With the new definition of VRML
2.0, the recent releases of Inventor, including the latest Linux version, have
been updated to be able to read, write and process VRML files. Actually, I have
found the standard Inventor viewers make better VRML model viewers than
some of the ones available for Windows and UNIX/Linux. They provide better
performance and a better rendering appearance.

What can I do with it?

Inventor is an ideal environment for creating animations, simulations, data
visualizations, VR work and CAD.

At Pratt & Whitney, we use Catia on high-end UNIX workstations for our design/
manufacturing process in the development of gas turbine engines for aircraft,
industrial and marine applications. Catia is a very powerful 3-D CAD/CAM
system, and has its own API for querying drawing models to retrieve geometry
and other information.

Using this API, an Open Inventor program xmtriag was written to convert Catia
solid models to stereolithography (STL) format, ready for input into an STL
machine for rapid prototyping. In addition to the STL format, the program

generates an Inventor file for us to visually verify that the part was translated
correctly.

My company uses this program as a utility in our design process to take a 3-D
snapshot of an engine part, convert it to STL format and send it via FTP to a
supplier, who then sends us back a quote and, eventually, a part. These parts
can be used for design reviews or for casting purposes to make precision
molds. This method saves both money and time in the design/review/
manufacture cycle and increases quality. In fact, this process has been so
successful we are in the process of installing our own in-house rapid
prototyping facility.

Besides those in engineering, many others are interested in seeing and
querying our drawing database. To avoid tying up Catia licenses, a viewer was
developed to extract the 3-D geometry from the model database and convert it
to Inventor format. These new Inventor models can be kept as a light version of
the parts instead of storing them in Catia. Using an SQL database, we can select
parts from a hierarchical drawing tree regardless of the platform being used
and view associated engineering and other data of the selected parts. In
addition to Catia, this converter/viewer will process Unigraphics and other CAD
drawing formats.

As a result, we have not had to buy new Catia licenses or other expensive third-
party viewers. The bulk of the graphics development was done by one person,
with some ancillary help from database-oriented personnel over a period of six
months. Excluding the price of the Inventor licenses, which are free on SGI
workstations, the ratio of prices for third-party viewer licenses to this person's
salary was over 100 to 1.

How does it work?

Inventor contains mostly 3-D objects and their associated attributes: geometric
shapes, colors, lights and 3-D object manipulators. These are rendered with
OpenGL or a similar API, such as Brian Paul's Mesa (see Resources).

The Inventor Xt Component and Utility Library provides widgets and utilities for
event handling, rendering, viewers and editors that can manipulate the scene
graph directly. These events include selection, picking and highlighting of
nodes, keyboard and mouse handling, and processing Xt and Motif callback
functions.

What else do I need?

For standard GUI design, we can resort to Motif (MFC under Windows NT/95),
or whatever happens to be our favorite 2-D GUI API. The standard components

such as the predefined viewer classes have been set up to make use of Motif
and Xt under UNIX/Linux using the SoXt classes. These classes have been
emulated under Windows, so that we have a somewhat easier time of porting
code between platforms.

I find Motif to be a little cumbersome to program, so I've been using Viewkit,
available from http://www.ics.com/, in conjunction with RapidApp running on
Irix to build the GUI and generate the C++ code stubs. Viewkit is freely available
for SGI and Linux workstations, and the RapidApp code compiles cleanly under
Linux. The GUI could have been built by hand, totally under Linux, but it helps
the design process to be able to work interactively. Also, building on both
platforms may help to make sure that portability issues spring up earlier in the
design process.

Motif is not an absolute prerequisite under UNIX. Mark J. Kilgard, of SGI until
recently, illustrates using Open Inventor without Motif in his book Open GL
Programming for the X Window System (see Resources).

“Hello Cone”, an Inventor Sample

Let's look at a quick illustration of how easy it is to set up a scene graph and
viewer. Example 2-4 of The Inventor Mentor presents “Hello Cone” using a
standard scene viewer. (See Figure 1.) The figure shows three main areas of the
SceneViewer: three thumbwheels, eight side buttons and a render area.

Figure 1. Scene Viewer with “Hello Cone”

The eight buttons handle object selection/picking, viewpoint manipulation,
help, returning to home viewpoint, setting a new home viewpoint, executing
viewAll to see the whole scene, seeking to a point and toggling the camera type
between orthographic and perspective.

The three thumbwheels handle manipulation of the scene's viewpoint by
rotating the camera angle about the X and Y axes and traversing along the Z
axis to obtain a zoom effect.

The render area is the most interesting. The mouse can be used to get the
same effect as the thumbwheels. Mouse button one will allow the user to select
the object, and if the mouse is moving when it is released, the object will
continue spinning in the direction that the mouse cursor was moving. Mouse
button two will allow the user to pan up/down and left/right, and if the control
key is pressed, zoom in and out. Mouse button three causes a pop-up menu to
appear that allows the user to set various attributes (such as rendering “as-is”,

https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f1.jpg

hidden-line, wire frame, points-only and bounding box), preferences and
displays of the thumbwheels and side buttons (known as decorations).

Listing 1 shows how simple it is to create this program. The first seven lines are
the minimum header files. Inventor has 553 different include files. This may
seem like a lot; however, each is very specialized, and selecting only the needed
ones will speed up compilation time. If I wanted to, I could have simply included
Inventor/So.h and let the compiler process all of the “So” prefixed files.

The first two executing lines after main create the main window widget and
invoke SoXt::init. This is an essential part of the program, because here,
Inventor is bound to Xt event handling so that its sensors will work properly.
SoXT::init is also where the licensing code is called. Failing to invoke init will
result in a core dump.

To be visible, each scene graph must have a node to attach to a viewer. In the
listing, I am using a SoSeparator which saves the traversal state before being
entered and restores it afterwards. This serves to prevent the attributes of its
child nodes from affecting other parts of the scene graph that follow. A
separator can include lights, cameras, coordinates, normals, bindings and all
other properties. Separators also provide caching and culling of their children
based on bounding box calculations during picking and rendering.

Once you create a node and pass it to the scene graph, Inventor takes over.
Inventor nodes are always created dynamically with the C++ new command—
never on the stack. Each node has a reference count, starting with zero when
created, and incrementing and decrementing as nodes are added and removed
as children to other parent nodes. When this reference count drops from one
to zero, Inventor automatically deletes the node.

During traversal, the node is referenced and then dereferenced as the scene
graph is traveled over. If we had not done a ref, the first time we traversed the
scene graph its reference count would have incremented as it was entered,
moving its reference count to one, and then decremented it back to zero as it
was left, automatically deleting the node and any children whose reference
counts had also dropped to zero. We would have been left wondering where
our node(s) went.

Next, we add a material property as a child to the root node. It has a diffuse
color or (1.0,0.0,0.0), which corresponds to full red, with red, green and blue
(RGB) quantities being expressed as floating-point values between 0.0 and 1.0.

A cone is now added to the root node. Its default values are one unit for base
and one for the length. It is located at the origin 0,0,0, and when unrotated,

https://secure2.linuxjournal.com/ljarchive/LJ/053/2903l1.html

points one unit up from the base along the Y axis. Since the cone comes after
the material property specifying the color red mentioned above, the cone
inherits its attributes and is also red.

Inventor traverses its scene graph by starting at the root node and traveling
down and to the right. Since OpenGL is a state machine, once we set an
attribute, it will retain that value until changed.

Now we create the SceneViewer, passing the widget of our parent window,
hooking our scene graph to it and setting the window title.

The show and hide methods call XtManageChild and XtUnmanageChild if a sub-
widget is passed to it. If the widget is a shell widget, show will call RealizeWidget

and XMapWindow, and if it is iconised, it will raise and de-iconify it. The hide
method will call XUnmapWindow.

Inventor Manipulators

This program can be enhanced to allow more than the viewpoint to change by
adding a manipulator. Using SoTrackballManip provides the ability to
interactively rotate an object about its own center on any of the three axes, as
shown in Figure 2.

Figure 2. Rotating the Cone

Only two lines need to be added to the source code. At the end of the includes
section of the program above, add the line:

#include <Inventor/manips/SoTrackballManip.h>

and immediately after the root->ref call, add the line:

root->addChild(new SoTrackballManip);

To be sure I was making the cone rotate, I moved it off to the side using mouse
button two, and turned on the origin's three axes display using the pop-up
menu of mouse button three.

Clicking the top button on the right of the main window changes the mouse to
selection mode. Moving the cursor to any intersection of the double rings and
selecting it with mouse button one causes it to be highlighted in yellow,
allowing us to rotate the cone about its axis. If the mouse is still moving when
released, it will continue spinning. Clicking on the hand icon will revert to
viewpoint manipulation mode, so that both the cone and its manipulator can
be rotated about the viewpoint axis. The cone is now spinning on its own axis
and orbiting around the center of the scene.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f2.jpg

Other manipulators will perform rotations, scaling and translation (movement)
tasks and any combination of these functions.

Editing Nodes

Inventor comes with a number of standard node editors for modifying the
scene. Figure 3 is a typical model (without any alterations) in SceneViewer, a
demonstration program that comes with the Inventor distribution. For a little
more information about the figure, see the sidebar “A Bit About Figure 3”.

Figure 3. A model of Deep Flight One, the single person submarine designed

and built by Hawkes Ocean Technologies of San Raphael, California

Selecting Editors from the main menu, we can select “Material Editor” and get
the dialog shown in Figure 4.

Figure 4. Material Editor Dialog

The blue dome can be selected on the front of the craft and made semi-
transparent; a few lights can be added and the viewer's built-in head lamp
turned off. Inventor has three types of lights which can be added to a scene:

• SoPointLight acts like a light bulb, radiating light equally in all directions.
• SoDirectionalLight emits light along a single direction as though it were

nearly an infinite distance away, like the sun.
• SoSpotLight emits light in a cone, allowing it to be pointed and focused.

Figure 5 is an example of a green SoDirectionalLight and red and white
SoSpotLights. Their respective icons have been left on so the manipulators are
visible—they would normally be left off during rendering. With the mouse, I can
select and move them as well as change their direction. The SoSpotLights have
the added cone to allow focusing the light by changing the radius of projection.

Figure 5. Results of Intersecting Color Spotlights

In Figure 5, we see how light behaves when pools of light intersect. Having
changed the dome's material properties, we see how the green light appears as
a reflection. If fog, other atmospheric effects and texture mapping were added,
we would have a highly realistic scene, ready for imaginative animation.

This submarine model is part of a simulator on which I am working. It includes
a digital elevation map viewer that reads and renders topographical data to
display terrain in which to drive. I used some of John Beale's ideas about
making use of government data in rendering landscape images. On his site at
http://www.best.com/~beale/, he provides a few useful converters, which he

https://secure2.linuxjournal.com/ljarchive/LJ/053/2903s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f5.jpg

has adapted from others, to turn the one minute elevation maps into PGM file
pixmaps.

Figure 6. Terrain Display

The terrain-handling section of the program is shown in Figure 6. It allows
control of terrain resolution and color. The viewer on the right side is standard,
so the image can be zoomed, panned and rotated as desired. Depending on
machine speed and terrain complexity, the rendering is more or less
interactive. Personally, I have found a value of 24 to be an ideal terrain-
complexity value.

The elevation data is kept in a 1204 by 1204 integer array representing the
heights surveyed in the map. This would be a bit much to try manipulating
interactively on a PC, so the terrain-complexity thumbwheel allows us to choose
the amount of reduction we want. A very simple algorithm is used. The value of
the thumbwheel, two in Figure 6, is used as the length of a square from which
we take the maximum height, and then added as a coordinate point to an
Inventor SoQuadMesh, basically a grid composed of quadrilaterals. With a
value of two, the maximum height is four elevation points. A value of ten
provides a maximum height of 100 points, eliminating 99% of the map for
rendering purposes. As this works interactively, the value can be changed until
a balance is found that combines the amount of needed detail with the desired
rendering speed. Within this, the area of interest can be located and only the
needed detail rendered.

Each SoQuadMesh node in Figure 6 is defined by a set of four vertices, each
shared with its adjacent neighbors. These vertices have an associated color
component which is smoothed out over the area of the SoQuadMesh. To give
some visual indication of the height and to generally make things more
interesting, I have set each elevation to have a different color based on a simple
formula specified by the user.

The six vertical wheels handle the assignment of maximum and minimum
depths for each color component, so overlapping blue and red results in a
purple area of overlap. The amount of color is calculated as follows: from the
maximum and minimum ranges the midpoint is found, and the percentage of
distance from the color border to this midpoint is the percentage of that color
to use. Thus, a vertex at the midpoint has a value of 1.0 for that color
component and a vertex three quarters of the way to the edge will have a value
of 0.75 of the color.

The file format read in is basically an ASCII PGM file containing three values
representing the maximum X, Y and Z values, followed by all elevations. This is

https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f6.jpg

handy because the file can be read with the xv command and saved in any
other graphical file format needed.

Originally, the terrain represented in Figure 6 was the pixmap shown in Figure
7, with lighter areas having more height.

Figure 7. Original Pixmap Terrain Image

Hooking Up New Hardware

Joystick drivers are available for Linux. The Inventor Toolmaker book on how to
extend Inventor has a section in the back on adding new hardware devices. A
lengthy discussion ensues, requiring a knowledge of the details of the
windowing system. I found I could bypass it by using an Inventor
SoTimerSensor node set to invoke the callback function at almost any time
interval with the attached node pointer. The setup for it is as follows:

SoTimerSensor *JS_Sensor =
 new SoTimerSensor(JS_SensorCallback, craft_xf);
JS_Sensor->setInterval(0.005); //scheduled 200/sec ...
JS_Sensor->schedule();

The function, called JS_SensorCallback, checks the joystick driver to see how
much it has moved. This is also the place to update the flight state model to
change the velocity and heading. We can check for things such as amounts of
air and power left, and how deep we are, based on the current XYZ coordinates.

Things to Add

A few things I wish to add to this simulator are:

• Networking over the Internet to join two users together
• Animated objects such as fish
• Direct reading of the terrain data from the Internet
• More empirical parameters to ensure the craft responds the same way in

the simulator as in life
• Tidal and water flow effects
• Light attenuation as depth increases

Summary

In addition to ease of use and availability of raw power, I like Open Inventor
because whatever I develop is totally portable between my Linux machine at
home and my SGI workstation at the office. Using Viewkit, Motif and Mesa, I
have a tremendous amount of flexibility in choosing where and how I develop
software.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903f7.jpg

Inventor and Viewkit provide the software functionality of an SGI workstation,
and with the recent advances in graphics hardware, Linux PCs will be closer
tomorrow to where the SGI workstations are today. Tomorrow is already
planned—no one has to ask us where we want to go today.

A special thanks goes out to Alexandre Naaman for showing the way, being
patient and simplifying things when they got muddled.

A Free Alternative to Inventor

Hardware and Software

Resources

Robert Hartley is an Australian citizen currently residing in Montréal, Canada.
His first involvement with UNIX was on the Minix operating system in the mid-
eighties. He started off his working life writing public security software for
various municipalities around Quebec and Ontario. He is now a graphics
systems analyst at Pratt & Whitney Canada. He can be reached via e-mail at
robert.hartley@pwc.ca.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2903s3.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903s4.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2903s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

LibGGI: Yet Another Graphics API

Andreas Beck

Issue #53, September 1998

The next generation fully portable graphics library

We didn't like the idea of another graphics library, but when we checked the
available solutions at the time the GGI project was initiated, we found nothing
that would fit all our needs:

• Portability
• Simplicity
• Transparent acceleration support
• Multihead support
• Extensibility
• Small size

Most of these issues had been addressed by one interface or the other, but
there was none that fulfilled them simultaneously. Let us talk about those
issues in more detail.

Portability

First of all, portability is our only weapon against the commercial software
market. If we are so portable that we can run on any platform, including the
mainstream market, we might be able to get those nice programs, because it is
no problem to port them.

The X Window System is about as portable as a program gets and X
applications are normally fairly portable. However, using X is often overkill and
causes considerable overhead. Moreover, writing X programs is rather difficult
(depending on which toolkit you use) and seems really alien to most non-UNIX
gurus.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

However, X is the most important platform in the UNIX world and, to call
ourselves portable, we need to support X. LibGGI uses a system of dynamically
loadable target drivers that allow it to run on anything with the ability to display
graphics. It does not make a difference if the display target is some type of
server software, a KGI-like device, something directly accessing graphics
hardware, a printer, a system-service of a microkernel OS or something else.
Table 1 shows a few available target systems that LibGGI programs can run on.

Table 1. LibGGI Platforms

Graphics-server systems:

• X Window System: AIX, IRIX, Solaris, Linux/x86/Alpha
• Microsoft Windows (very alpha)

Device-oriented systems:

• KGI: Linux/x86; planned: Solaris/x86, Linux/Alpha
• Solaris /dev/fb

Direct-access systems:

• VESA/DOS
• SVGAlib, GLIDE, SUID-KGI : Linux

LibGGI detects the most desirable target available on the current hardware and
automatically makes use of it. This can be overridden to force different
behaviour easily.

Compatibility is maintained at binary level within one platform. That is, a LibGGI
application compiled for Linux x86 will run without modification on a KGI full
screen, in an X window, using SVGAlib or GLIDE. It will even run on a text-mode
screen via LibAA or whatever is available.

Compatibility across platforms requires a recompile, but this should be painless
if the surrounding code doesn't heavily use OS specifics.

So, porting applications is easy. But what about porting LibGGI itself? We have
tried keep LibGGI as portable as possible. Most GGI code compiles without a
warning in gcc -pedantic mode. We have also tried to keep use of OS specifics
to a bare minimum.

LibGGI should build easily on any system that has heard of POSIX. Even libdl
isn't strictly required anymore to allow for systems that don't recognize
dynamic libraries.

Simplicity: An Example

Another important point in the design of LibGGI is simplicity. If a programmer
just wants to write a small graphics utility, he may be scared off by the
complexity of X. To give you an idea of how programming with LibGGI works,
let's look at the small example program shown in Listing 1.

It doesn't show good style, but is designed to be straightforward to read. As
with any library, you have to include its headers. These are located in a
subdirectory. Since we have more than one library, we decided that allocating a
whole subdirectory would cause less confusion.

The first thing you have to do when using LibGGI is call ggiInit. This initializes
the LibGGI internal data structures and sets up everything. Next, you call
ggiOpen. This call returns a ggi_visual_t which is an opaque type, similar to what
X calls a “drawonable”. Think of it as an abstract handle to the display you draw
on. Note that you can have multiple displays per program as required by
complex applications which handle multiple screens.

You will want to set a graphics mode on the visual. A mode consists of the size,
or rather, resolution of the visible area (visx, visy) as well as that of the virtual
area (virtx, virty) on which the view port can be panned around. Moreover, you
need to specify the type of display you request; for example, a GT_24BIT true
color visual. Note that calls to request additional options are available, as well
as the capability to automatically choose values. This is highly recommended in
order to enhance portability.

Graphics Context

Now we are set to start drawing. LibGGI uses a GC (graphics context) to
represent the current state of the drawing system. We considered a state-free
approach, but this would have meant:

• Lots of parameters for some functions
• A very awkward look for programmers used to the GC concept
• Ignoring that actual acceleration hardware normally has a GC

We now draw a few dots in different colors by using ggiSetGCForeground and
ggiDrawPixel. As an alternative, we draw the next set of pixels using ggiPutPixel.
Higher-level functions are also available, but only to a limited extent. As you can
see from the example program, we support various kinds of lines and boxes
(and yes, these are accelerated, if the underlying target supports it), but that's
about it.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2998l1.html

Don't be disappointed here. There is a higher-level library called LibGGI2D
providing more complicated functions. LibGGI has been designed to be a basic
“foundation” library on top of which specialized libraries can be built for more
complex requirements, such as 3-D and animation.

Events

When we are done drawing, we use ggiEventPoll to wait for a key or mouse
event. ggiEventPoll determines if an event of the given type(s) is present and
will eventually block for it for a specified time or indefinitely, if the pointer to
the timeval struct is NULL as in our simple case.

We then use a convenience function to get a keystroke. Note that this will block
again, if polling was terminated due to mouse activity. In most cases, you will
want to use LibGGI's event system to get input from any device that is
attachable to a computer system. For event classification and configuration, a
helper library called LibGII is available to give you a flexible and simple way of
mapping device input to program actions. After ggiGetc has returned, we close
down the visual using ggiClose, and then the whole LibGGI library using ggiExit.
Note that you can reopen another visual before ggiExit, which can, for example,
be used to transfer the program from one target to another. After ggiExit, every
other call to LibGGI functions is undefined. You will need to call ggiInit again
first. You have now gained a tiny glimpse at how LibGGI programs look.

Advanced LibGGI Usage

Many applications, especially those ported from DOS and other systems where
a relatively direct access path to the hardware is present, will want to access
graphics RAM directly. While being tied to the layout of the particular card/
mode isn't a great idea for portability, it is a good way to get extra speed.
LibGGI solves this dilemma by exporting a DirectBuffer structure describing all
details of the currently active video buffer. The application can decide whether
to use it or fall back to standard LibGGI calls.

LibGGI applications can service multiple visuals at the same time, thus allowing
multihead applications like CAD or games screens split over several monitors.
For convenience, we have “memory-visuals” that can be used to draw an
“invisible” area first and then blit to screen (crossblitting). Simple color-space
management, such as gamma setting, is available, as well as support for
double/triplebuffering and waiting for vertical retrace, or even for a specific
position of the CRT beam (where the hardware allows).

3-D, Movies, Fonts

LibGGI ends at about the level of a DrawBox, which is not a desirable
environment for many applications, and transparent acceleration is limited.
LibGGI was kept small on purpose to work well under constrained conditions
such as embedded systems, and not waste space for applications which do not
need advanced functionality.

We extended LibGGI so more complex APIs could be implemented “on top” of
it. So far we have LibGGI2D, Mesa-GGI and a tiny windowing library, LibGWT,
running. A lightweight 3-D library, font and animation support are works in
progress. Such libraries are implemented as LibGGI-Extensions. Being an
extension has several benefits over just “using” LibGGI; for one thing, you
inherit the complete functionality regarding library loading and target support.
Thus, extension libraries also bring along their set of API drivers which can be
used to allow for transparent acceleration. LibGGI ensures basic services, so all
extension libraries will run on all LibGGI targets, but the level of acceleration
will vary depending on the availability of driver libraries for the extension.

Transparent Acceleration and Multi-API

At the core of LibGGI is a trick that helps LibGGI be portable and smart
regarding acceleration—a creative usage of dynamically loaded libraries. LibGGI
functions can be overridden by loading a suitable library. LibGGI is aware of
two different types of such libraries:

1. Display-Modules describe a way to connect to a given kind of back end like
X, KGI, SVGAlib etc. They are loaded at ggiOpen time.

2. Driver modules are normally loaded at mode-setup time and each
describes a given API used to draw on the current target. These APIs are
normally selected by the back end that is queried for a set of “suggest-
strings” that map to these APIs. See Figure 1.

Table 2. Multiple APIs

1. generic stubs (fallback emulation)
2. linear-8-framebuffer
3. generic-KGI-ioctl
4. vendor-ABC-KGI-PrivateIoctl
5. vendor-ABC-MMIO-DirectAccess

Figure 1. How Transparent Acceleration and Multi-API Work

You might be surprised by the term “set of”. Normally, there are multiple APIs
which can be used to draw on a given target. Let me explain this point a bit
further for the KGI target, which makes the most extensive use of this feature.
Table 2 is the set of suggest-strings for a fictional ABC graphics card being
accessed via KGI. The KGI module managing the card will tell LibGGI to first load
a “stubs” library that is used for emulation when a function is not natively
supported. This stubs library contains fall-back functionality, such as making up
a filled box from multiple horizontal lines. Then LibGGI loads a library that
accesses the linear, 8-bit wide frame buffer exported by KGI. This library will
hold primitives such as DrawPixel and override the stubs library. LibGGI will
then load KGI's generic ioctl method to access acceleration features. This library
will handle functions which are commonly accelerated. The next suggest-string
adds a few commands that are rather uncommon, but present in the ABC,
which are accessed by the private area of the ioctls. The last library loaded
accesses the ABC registers in an exported MMIO region. All the libraries are
loaded in increasing order of precedence. The later ones override functions of
earlier ones if they can do better. Please note this is not a static process—it can
still change at runtime, if necessary.

Performance Considerations

When it comes to graphics performance, many people are afraid LibGGI will be
slow because of the relatively high level of abstraction its extension libraries
provide. Actually, this high level is necessary if we want to use all graphics cards
at their maximum capability. Some high-end cards do have a truly high-level
internal API. Having applications that use a low-level API would leave that part
of the card unused.

On the other hand, in some cases it is difficult to decide which level of API to
use. Consider a 3-D game. You can often do some clever optimizations based

on your knowledge of the scene. For a low-end graphics card, you might be
able to calculate things faster yourself up to the rasterization level. With high-
end cards you might be better off using OpenGL directly, because all
calculations go to the card which does them faster than the host CPU.

This is a difficult problem, and actually the only good solution is to implement
both and select one method at runtime.

Another ever-present problem is calling overhead. It is faster to use inline code
than any kind of library. However, the biggest relative gains/losses are achieved
with the very fast small operations such as DrawPixel. This is the primary
reason we chose to implement DirectBuffer functionality. If the application
knows the DirectBuffer format used by the graphics card, it can use its own
inline code to bypass the calling overhead.

LibGGI should perform well over the whole range of possible applications and
graphics cards, though specialized solutions might perform slightly better.

Available Applications

If you're considering using LibGGI either as a consumer or for programming
your own applications, you might be interested in which programs are already
available.

LibGGI has been designed for high speed graphics, so game designers are our
primary customers. A lot of popular games have been ported to use LibGGI.
Descent and DOOM are two of the more well-known ones. Using LibGGI, we
managed to run Descent on a Linux-Alpha machine a few weeks after the
source was released.

A common misconception about the GGI project is that we are trying to replace
X. This is wrong. We are at a much lower layer than a windowing system, and
have implemented some popular window systems on top of LibGGI. We have
our own X server (Xggi), a viewer application for the VNC networked desktop,
and the Berlin consortium is building its server on top of LibGGI. The existence
of these servers together with the ability of LibGGI to display on them brings us
to the next generation of interoperability.

Another broad group of applications deals with viewing files. LibGGI has the
nice ability to view a JPG file on the console or in an X window, without the
spawning application (such as mc) being aware that it is running on X or the
console.

Most of the above-mentioned programs have been ported from other graphics
APIs. All porters have told me that learning LibGGI was easy, and that after
porting, the look of the program was improved.

If you are interested in LibGGI, you will want to know where to get it (see
Resources). Our project home page provides many pointers and quite a few
sources. LibGGI is available as releases from several major software archives
like Sunsite and tsx, as daily CVS snapshots from our web page and its mirrors,
as well as via CVS from our public CVS mirrors.

Several precompiled binaries are also available, which should be useful for the
“pure user” who doesn't want to bother compiling LibGGI. Give LibGGI a try the
next time you write a graphics application.

Andreas Beck studies physics in Düsseldorf. In his free time he enjoys adding
new features to his favourite programs and operating systems. He can be
reached at andreas.beck@ggi-project.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Porting SGI Audio Applications to Linux

David Phillips

Richard Kent

Issue #53, September 1998

This article describes the process of porting a variety of audio applications from
the SGI platform to the Linux operating system.

The process used to port SGI audio applications was reflective of Linux's own
distributed developments—a truly international collaboration dependent on
Internet communication. It is still a work in progress, with improvements and
extensions to the software being created and contributed by programmers
around the world.

Background

NoTAM is the Norwegian network for Technology, Acoustics and Music research
located at the University of Oslo. Professor Oyvind Hammer of NoTAM wrote a
series of applications designed to aid musicians and researchers in the analysis
and representation of sound. Written originally for Silicon Graphics (SGI)
computers, these applications utilize the graphics capabilities of the X Window
System and make use of SGI's audio and sound file systems. Many applications
offer basic and advanced editing features as well as sound file playback
capability.

Preliminaries

Although not traditionally thought of as an audio platform, Linux already has
several sound file editing and processing systems. Packages such as MiXViews,
Snd, XWave and the CERES Soundstudio are available for audio recording,
editing and playback. Many other packages can be found on the Internet. The
Linux Soundapps page (see Resources), which I maintain, is a comprehensive
and up-to-date list of Linux-based audio applications.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The editing capabilities of the NoTAM software are of a different nature: edits
are performed on the graphic results of a Fast Fourier Transform (FFT) of a
sound file. Explaining FFTs is beyond the scope of this article, but the results of
a transform are usually depicted in a “spectral representation”, i.e., a
representation of frequency versus time. With the appropriate software, edits
can then be made directly on the frequency content of a sound. Until recently,
Linux had no such software, so porting the NoTAM applications to Linux was an
attractive prospect.

Starting Out

When the NoTAM source code (made publicly available by Dr. Hammer and
NoTAM) was examined, I noted that the graphics code consisted of plain X calls,
and its sound support consisted of calls to the SGI-specific audio and audiofile
libraries. Many of the applications were built with Motif. Since the necessary X
libraries and LessTif (a freely available replacement for the Motif libraries) were
already available, all that was needed in order to do the port were
replacements for the audio and audiofile libraries. I contacted Dr. Hammer and
asked him for permission to try porting the software to Linux, and with his
gracious consent, the porting project began.

Scouting Around

Looking over an excellent web page dedicated to SGI audio applications
(maintained by Doug Cook), I noticed a sound-file editor named DAP (Digital
Audio Processor), written by Richard Kent. DAP uses the XForms libraries, so I
inquired about the possibility of a Linux port. Richard informed me that he had
already written such a port, and when I mentioned I wanted to port some other
software written for the SGI to Linux, he graciously supplied the code used in
DAP to replace the SGI audio and audiofile libraries and headers. The Linux
versions of libaudio.a, libaudiofile.a and their associated header files are
virtually direct “plug-in” replacements, meaning I could leave the NoTAM
sources relatively intact.

Porting Begins

Armed with X11, Richard's replacement code and LessTif, I attempted my first
port. I chose Dr. Hammer's Sono. This program analyzes a sound file and
creates a PostScript sonograph of the spectral analysis. Since Sono does not
display the graphics, instead relying on external display mechanisms, the port
was fairly trivial, requiring only minor modifications.

With this first success, I moved on to another relatively straightforward
program, PTPS, which creates a PostScript graph of a pitch-tracking analysis.

PTPS also compiled easily with only small changes, so I decided to attempt a
more substantial port.

Ceres is an FFT-based program, but its design goes far beyond the simplicity of
Sono and PTPS. Ceres renders the FFT results into a graphic display which can
then be edited directly and saved as a new sound file. The challenge in porting
Ceres was primarily in the X programming. Since no real-time aspects were
involved, there were no problems with audio playback. There were, however,
problems with the use of variable-length Xt argument lists which, in theory,
must be terminated with a NULL entry. The SGI compiler and libraries did not
appear to require this NULL; however, the Linux GCC compiler and libraries
were stricter, and Ceres would fail with a segmentation fault upon opening if
the NULL was missing. In addition, a problem with different maximum random
numbers (RAND_MAX) between SGI and Linux caused a crash when using the
Random Sieve transform. Once these two problems were solved, the porting of
Ceres was complete.

I then decided to do an even more ambitious port, Dr. Hammer's Mix package.
Mix is a 9-channel audiofile mixer with graphic waveform displays, graphic
volume and panning curves, a scripting language for complex mixes, and real-
time effects processing. (See Figure 1.) Obviously, audio playback capabilities
are exploited to the full. I thought porting Mix would be by far the most difficult
challenge, yet with Richard's replacement libraries (and some judicious code-
cutting), I was quickly able to compile the Mix application, and Linux now has an
excellent 9-channel, sound file mixer.

Figure 1. Mix Screenshot

Releasing the Packages

I placed the ported programs and their sources on the Music Technology
Department's FTP server at Bowling Green State University in Ohio, I then
notified Dr. Hammer of our successes (he was pleased we had achieved so
much), and I also advised NoTAM that their software was now available for
Linux. NoTAM obtained the packages and placed them on their server, making
the applications easily available to everyone. I also sent notices to the Csound
mailing list and comp.os.linux.announce to inform the Linux community of the
availability of these packages.

Since the releases were made public, development has continued. Working
from our source packages and Richard's library code, the Swedish composer
Reine Jonsson has contributed a version of Mix which now handles the popular
WAV format sound files (the original Mix, along with the other NoTAM
packages, supports only AIFF format files), while reducing loading times and
enhancing playback smoothness (a critical factor on my 486/120). A new

https://secure2.linuxjournal.com/ljarchive/LJ/053/3007f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3007f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3007f1.jpg

version of Ceres (see Figure 2) called Ceres2 is in development by Johnathan
Lee and should be available in a Linux port by the time this article is published.

Figure 2. Ceres Screenshot

Further Development

Improvements can still be made: the applications ported so far are reasonably
stable but will sometimes crash for no apparent reason. In some cases, not all
of the original functionality is available, particularly if the package uses routines
specific to the SGI's audio hardware capabilities. The Mix source code, for
instance, includes calls to the SGI MIDI interface, but a replacement library for
those calls has yet to be written. For now, I have had to disable the MIDI control
code in the Mix sources. I have received a substantial amount of mail from
users who have expressed interest in seeing more of this porting development,
and my hopes are high that we will soon have a replacement for the SGI MIDI
libraries to add to the audio and audiofile libraries already supported.

It must be mentioned that the NoTAM packages are not the only sources for
high-quality UNIX audio-processing software available for possible porting.
Guenter Geiger has successfully ported Paul Lansky's RT, another real-time,
sound file mixer with excellent scripting capabilities. Work proceeds on ports of
Paul Lansky's Ein (a DSP scratch pad), Mara Helmuth's Patchmix (a graphic
patcher for the Cmix audio-processing language), and Russell Pinkston's
XPatchWork (similar to Patchmix, but using the Csound language). Many other
audio-related packages are available for Linux, and the interested reader
should look at the Linux Soundapps web page for a continuously updated and
comprehensive listing.

Final Thoughts

When I first used Linux I was thrilled by its possibilities, but dismayed by the
lack of high-quality sound-processing software. Nevertheless, I was inspired by
the availability of source code and the willingness of the Linux community to
help develop audio applications. Since I am not a programmer, I relied on the
skill, experience and advice of Linux users around the world. Like Linux itself,
these projects were developed by a distributed collaborative effort, heavily
dependent on the Internet for all communication, and built with freely available
tools and libraries.

Thanks to Dr. Oyvind Hammer, Richard Kent, the LessTif developers and the
XFree86 project, Linux audio software grows in quantity and quality almost
daily. I encourage interested developers to contact me and let me know what
they're working on or what they wish to work on. Many projects are waiting for

https://secure2.linuxjournal.com/ljarchive/LJ/053/3007f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3007f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3007f2.jpg

developers who would like to contribute their talent and interest to the rapidly
growing Linux audio and music software base.

Technical Considerations

by Richard Kent

When I first heard of Dave's project to port audio applications from an SGI-
based environment to Linux, I was very interested in becoming involved—
particularly because the sheer dearth of audio applications for UNIX was the
primary reason for programming the Digital Audio Processor. I initially
implemented DAP for SGI-based systems, but shortly before Dave contacted
me, I successfully ported DAP to run in a Linux-based environment. (See Figure
3.) This experience helped greatly when porting the NoTAM applications. This
sidebar is intended to detail the three main technical considerations when
attempting such ports.

Figure 3. Digital Audio Processor

Audio and Audiofile Libraries

Most, if not all, SGI audio applications make extensive use of the excellent
audio and audiofile libraries supplied with IRIX. The audiofile library provides an
API primarily designed to allow effortless loading and saving of AIFF audio files.
The audio library is designed to allow straightforward audio input and output
as well as control global audio settings. In order to make porting as painless as
possible, replacement libraries had to be written for the Linux operating
system.

The audiofile library was tackled first. Since this library simply has to perform
file I/O based on the calls made, it was relatively straightforward to set up the
necessary AIFF structures and to initialize, load and save these structures as
necessary. However, because samples are read from and written to disk one
sample frame at a time, this straightforward port of the audiofile library is
relatively slow. In addition, only AIFF files are supported—compressed AIFF-C
and WAV format files are not.

The audio library was a more demanding port, requiring extensive investigation
into the facilities provided by the Open Sound System (OSS/Free) driver which
is, by default, compiled into the Linux kernel. The basic process when using OSS
involves opening /dev/dsp and either writing sample data directly to the device
or reading from the device. In addition, opening /dev/mixer allows control over
the global audio settings.

https://secure2.linuxjournal.com/ljarchive/LJ/053/3007f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3007f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3007f3.jpg

The Linux conversion basically sets up internal sample queues and provides
facilities to transfer these sample queues to and from /dev/dsp. Most
complications which arose were due to the many different sample formats
(resolution and number of channels) supported by both the audio library and
the OSS driver, thus requiring many different data conversions on input and
output.

The resulting audio library on Linux is very much a “brute force” conversion and
differs significantly from the SGI-based library, despite the almost identical API.
The main difference is that the Linux audio library is not threaded whereas the
SGI-based library constantly inputs and outputs sample frames from a cyclic
queue in the background. As a result, the API user needs to be aware that
samples must be constantly written to or read from the device to avoid audio
glitches. Also, when finishing sample playback, blank samples must be written
to the device to force the remaining sample queue to play before closing the
device. The other main difference is that only one audio “port” may be open at
any given time, due to the exclusive nature of opening /dev/dsp.

Compiler Differences

The default SGI compiler is quite different from gcc, which is the most
commonly used compiler on Linux. More specifically, the SGI compiler is
“relaxed” and not nearly as strict as gcc. This manifests itself in several ways,
which must be considered when porting software from one platform to the
other.

The most obvious difference is that explicit casting is often required on gcc to
avoid warnings and errors which do not occur when using the SGI compiler.
Two examples are shown here.

Default SGI compiler accepts:

int x = 3.2;
int *y = calloc (10,sizeof (int));

Linux gcc requires:

int x = (int) 3.2;
int *y = (int *) calloc (10,sizeof (int));

Correct link order is also more important when using the Linux gcc linker. The
default SGI linker appears to place little importance on the order of link
components (object files and libraries) when linking, as long as all “loose ends”
are tied up by the end of the linking process. The Linux gcc linker, which I freely
admit to not fully understanding, is much stricter and frequently requires

reordering of link components and sometimes even duplication of linked
libraries.

Another major difference between the SGI default compiler and gcc arises
when combining C and C++ files where the C files cannot, for syntactic reasons
or otherwise, be passed through the C++ compiler. When using the default SGI
compiler, the command for compiling both C and C++ files is CC, so there is no
need to explicitly specify linkage specification using the extern C construct.
When using the gcc development environment, the command to compile C files
is gcc and the command to compile C++ files is g++; thus, the linkage
specification must be specified when referring to C-based functions within C++
files, or else linking will fail due to C++ name mangling.

Variable Argument Lists

One final major difference between SGI and Linux development environments
is that of variable argument lists for Xt and Motif function calls. The Xt toolkit
provides the developer with basic GUI constructs which may be used directly to
create a user interface. In addition, Motif and LessTif use the Xt toolkit to
provide a higher-level API for constructing user interfaces.

Within these toolkits are functions which have a variable number of arguments,
much like the standard printf system call. Unlike printf, these functions require
a null entry to terminate the argument list. However, in the SGI development
environment, these null entries are optional and SGI developers frequently
forget to terminate the argument list with such an entry. This does not cause a
problem on SGI-based systems, but if this same code is then compiled in a
Linux environment, the resulting executable will almost certainly core dump
upon execution. The fix is simply to add the missing null entries to the relevant
calls.

Resources

David Phillips is a composer/performer living in Ohio. He has been involved
with personal computers since 1985, when he first saw and heard a
demonstration of MIDI music-making. Recent computer-music activities include
an ambient composition for the artist Phil Sugden, lecturing on computer-music
programming languages at Bowling Green State University, and maintaining the
“official” version of Csound for Linux. Besides playing music and programming,
Dave enjoys reading Latin poetry, practicing t'ai-chi-ch'uan, and any time spent
with his lovely partner Ivy Maria. He can be reached via e-mail at
dlphilp@bright.net.

https://secure2.linuxjournal.com/ljarchive/LJ/053/3007s2.html
mailto:dlphilp@bright.net

Richard Kent is a professional C/C++/ActiveX developer currently working in
Edinburgh, Scotland on traffic analysis and simulation software for both UNIX
and NT. Richard has a very keen interest in the field of music technology and is
the author of DAP (Digital Audio Processor)--a popular sample editor for Linux,
SGI and Solaris operating systems. He can be reached via e-mail at
rk@quadstone.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:rk@quadstone.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Visualizing with VTK

James C. Moore

Issue #53, September 1998

A look at a new tool for visualizations of scientific data—VTK, an object-oriented
visual toolkit.

Most scientists and engineers are adept at approaching and solving problems.
If they use the scientific method, they may even get the right answer. However,
analyzing results and measurements is often difficult because visualization
tools are lacking. If your experience has been like mine, the tools for
investigating data are either too specialized (vis5d), too weak (plotmtv) or too
expensive (AVS). While good commercial packages exist such as Tecplot from
Amtec Engineering, they often place restrictions (such as no remote displays in
X) and constrictions on the user.

To solve this problem, three very intelligent men put their heads together (for
nine months before coding began) and wrote The Visualization Toolkit (VTK).
Will Schroeder, Bill Lorensen and Ken Martin have created one of the best
systems available for performing scientific visualization. It is far and away the
best value to be found today.

In this article, I will briefly describe what is required to obtain, compile and use
VTK. The goal is to leave you with a sense of the scope of VTK and the level of
commitment required to use it. You probably won't be able to immediately
start creating visualization pipelines; however, you will have a good idea of the
range of problems it is suited to solve and what will be required of you to solve
them.

Overview

VTK is a collection of visualization “objects” which can be connected to make a
visualization pipeline. VTK strictly follows the object-oriented model, whereby
there is a hierarchy of objects, and any object which is a “sub-object” of another
inherits the parent object's methods and properties. Objects are also broken

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

down into “classes” which represent the authors' best estimate of the most
effective set of tools required to put together a visualization. The objects are
broken down into 14 categories by function: Foundation, Cells, Datasets,
Pipeline, Sources, Filters, Mappers, Reader/Writer/Importer/Exporter, Graphics,
Volume Rendering, Imaging, OpenGL Renderer, Tcl/Tk and Window-System
Specific. The user will most often be concerned with Dataset, Pipeline, Sources,
Filters, Reader/Writers and Graphics and/or Imaging or Volume Rendering,
though the other classes are implicitly used in most cases.

With these classes, we have the ability to construct a “pipeline” which reads or
creates data, filters it as required, and finally renders it on the screen or
exports the rendering to a file. While the classes follow the object model, the
pipelines are procedural, which is most often needed when reducing data. The
pipeline starts with a source (data), is operated on by any number of filters
(even recursively) and is finally presented as output. The “data” source may be
unstructured points, structured points, structured grid, unstructured grid,
rectilinear grid or polygonal data. The class of data determines the types of
filters which may be used to operate on the data, with the more structured
data having the most filters available. For example, unstructured points may
not be contoured, but they can be remapped to a structured points set, which
can be contoured. Armed with these tools, all that is required to visualize
almost any data is a sound approach to reducing it. With the ability to visualize
data well in hand, the rate limiting step is now relegated to performance, and it
can be a big issue. Datasets can easily get quite large or require a lot of
computational effort to manipulate. VTK has tools to deal with these issues as
well.

Using VTK

To start, I recommend the book The Visualization Toolkit, Second Edition, by
Will Schroeder, Ken Martin and Bill Lorensen, published by Prentice Hall. It is an
invaluable reference for understanding both the visualization process and VTK.
After you've read the terse (yet complete) man pages, you'll understand why
the book is needed.

All of the following examples were created using the Tcl/Tk bindings to VTK.
These examples can also be created in C++, Python or Java; the latter two are
relatively new to VTK, so your mileage may vary. Some examples were
borrowed with permission from the VTK distribution, and all are biased toward
reduction of computational data as opposed to imaging data or graphics
applications.

Often, the first thing we ask to see when we have a large dataset is “Where is
the data?” A simple enough request, but most tools will not easily give it to you.

Let's say we have smooth-particle hydrodynamics code which uses and
generates unstructured points. For each point, we have the x, y and z
coordinates as well as several scalar values (for now, tensor components will be
considered scalars).

While not the most memory-efficient, one way to “see” the particles is to place
glyphs at every particle position, scaled by the particle size. The visualization
pipeline must take in the point data, create a glyph object and place one at
each point location, scaled by the particle size. The set of glyphs must then be
rendered on the screen. Listing 1 is the Tcl version of the code to do that,
assuming you have read the point positions into the arrays xpos, ypos and zpos

and the radius into rad.

Figure 1. Spherical Glyphs Scaled Relative to Particle Size

When this pipeline is run, a visualization window is opened on the desktop with
a spherical glyph centered at the location of each point and a radius equal to
the particle size (see Figure 1). Objects which are implicitly included in the scene
but not listed above can be specified if required. These include lights, cameras
and object properties. The implicitly defined objects are also accessible and
controllable through their “parent” object; in this case, the renderer. In Tcl, a
handy command is available from the VTK shell called ListMethods that informs
you of all methods (and the number of arguments) available for any object.
Adding the command ren ListMethods to Listing 1 would return the
information that about 60 methods are available to you. After using this
command on several objects, you will begin to see a structure to the methods
and develop a sense of how the objects fit together.

With the addition of Tk entry boxes, all controllable attributes of all objects can
be controlled interactively. However, changes to the pipeline will be seen only
when the pipeline is re-executed with the new value and an Update is
requested. This can be handled either by setting all attributes in a procedure
called from the Tk interface or by attaching the method to the “command”
argument of the widget that sets the value of the attribute. I recommend the
former method.

The main access to the visible attributes of the scene is through the Actor

objects and the Mapper objects. Attributes, such as visibility, color, opacity,
specular reflectance, specular power and representation (wireframe, points,
surfaces), are set with the vtkProperty object that is automatically created for
the vtkActor, if one is not explicitly defined.

Now, let's say you want to evaluate a mesh created with an automatic mesh
generator, and furthermore, you want to tag the cell with the smallest spacing.

https://secure2.linuxjournal.com/ljarchive/LJ/053/3010l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f1.jpg

Starting with the nodes and connectivity list, the “mesh” can be built by
connecting the connected nodes with line segments and placing a geometric
object at each of the nodes containing the shortest and longest connection.
Listing 2 is a “quick and dirty” bit of code that took me about 15 minutes to
write (well, maybe a little longer). It assumes the nodal positions are known,
and their right, back and upper neighbors are known and stored in the arrays
i1tab, i3tab and i8tab, respectively.

Figure 2. Mesh Nodes, Connectivity and Minimum Cell Dimension

The code in Listing 2 creates the visualization shown in Figure 2. This pipeline
does not include the code to make the boundaries visible. We will cover that
next. The key features of this pipeline are the multiple sources (mesh data,
sphere) presented in one scene. The sphere is placed on the node with the
nearest neighbor in one of the three coordinate directions mentioned above.
The polygonal data represented by the vtkPolyData object called mesh consists
of two-point polygons, i.e., lines. Polygonal data is often read in with a reader or
created automatically by a source or filter such as the vtkSphereSource (Listing
1) or a vtkContourFilter. Notice that the mappers for the mesh and for the
sphere are different. The mesh mapper takes the mesh directly as input, but
the sphere mapper operates on the vtkSphereSource, which is not vtkPolyData.
The reason for this is that the mapper reads vtkPolyData as input. The mesh is
vtkPolyData. The sphere is a source which can send out vtkPolyData, when
requested, as we do when employing the GetOutput method on the
vtkSphereSource.

Satisfied with our mesh, let's look at some data. The pipeline excerpt in Listing
3 is based on the same mesh data as above, but includes methods to show the
boundaries in the model and vector fields. [Complete listings for this article are
available by anonymous download in the file ftp://ftp.linuxjournal.com/pub/lj/
listings/issue53/3010.tgz.]

A lot is happening in the pipeline shown in Listing 3. First, the “mesh” polydata
set gained two attributes: scalars and vectors (e.g., SetScalars, SetVectors). The
vectors were created in a vtkFloatVector object. Their magnitudes were
calculated and stored in a vtkFloatScalar field called field. The scalars are used
by the mapper to color the vectors, and the vector data is used by the
vtkHedgeHog (vector plotter) to create the oriented and sized vector glyphs. A
separate pipeline is used to draw the surfaces of the object, and a 7-case switch
is used to build the point connectivities for the surface panels per cell. It takes
advantage of any connectivity which may exist on a given cell and builds a
special type of polydata called “triangle strips”. Triangle strips allow n
connected triangles to be created with n + 2 points. The vtkPolyData must be
told that the given cell array values are triangle strips in order to properly set

https://secure2.linuxjournal.com/ljarchive/LJ/053/3010l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010l3.html

up the connectivity. This is accomplished with the SetStrips method, as
compared to SetLines in the mesh example. The panels are made transparent
by setting the opacity to .5, which allows the vectors to be seen. The color map
for the vectors has been explicitly set to range between the minimum and
maximum velocity magnitudes. By default, the mapping is red-to-blue from 0 to
1. The SetScalarRange method allows the range to be reset in the mapper.
Notice the red vectors in the back left corner of Figure 3—an error is creeping
in from the boundary and the location where it begins is very clear. Apart from
verifying the correctness of the mesh, boundaries and boundary conditions, I
can easily diagnose trouble spots in the calculation.

Figure 3. Vector plot of fluid velocities colored by magnitude and outer

boundaries visualized with transparency.

Finally, these last two figures demonstrate some of the advanced features of
VTK. Figure 4 is a BMRT-rendered (Blue Moon Rendering Tool) export from VTK.
The complex shapes were built entirely from contoured implicit functions.
Figure 5 is from the VTK examples directory and shows streamlines emanating
from “seeds” that are located at a heater vent.

Figure 4. A BMRT-rendered view of a VTK scene. This visualization contains a

complex combination of implicit functions, polydata and filters.

Figure 5. Plot from the VTK sample suite. This visualization includes streamlines

flow colored by temperature.

While this treatment only scratches the surface of VTK's capabilities, you can
begin to see the flexibility and power it affords the user. In addition to the
features discussed in this article, VTK has objects for image analysis and
manipulation, implicit functions, data transformation, data sampling, volume
(solid object) rendering, memory management, texture mapping, data
manipulation and exporting and more. Admittedly, the learning curve for
becoming facile with VTK is somewhat steep, but it pays for itself many times
over in saved time when doing complex analyses.

Obtaining VTK

The official source code release of VTK is available from the VTK home page at
http://www.kitware.com/vtk.html. For the more daring, almost-daily beta
releases are available from http://www.kitware.com/vtkData/Nightly.html. On
the average Linux system, software required to compile and run VTK includes
the following: C++, OpenGL (or Mesa), tkUnixPort.h (from the Tk source
distribution), Tcl 7.4 or higher, Tk 4.0 or higher. If you plan to use the Python or
Java bindings to VTK, you will need those packages as well.

https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3010f5.jpg

Compiling VTK

The VTK source code is written entirely in C++, and as of version 2.0 with Linux
2.0.31 and either libc5 or libc6, it compiles successfully without error with Mesa
2.5 and Tcl/Tk 8.0. In the README file at the top of the distribution, the user will
find all the instructions necessary to do the build. Here's what I did:

1. Obtained and compiled Mesa (easy).
2. Retrieved tkUnixPort.h from the Tk source distribution and placed it in the

(vtk_top_dir)/unix/directory (I used Tcl/Tk 8.0).
3. Ran ./configure --with-mesa --with-tcl --with-shared --with-tkwidget --with-

patented

4. Edited user.make to find all the necessary support files.
5. Ran make.
6. Ran make install (optional; run only if you have the disk space).

Many more configuration options are available and can be seen by typing ./
configure --help. I had trouble with the Python and Java bindings. The build, as
configured above, takes about an hour on a Pentium-Pro 200MHz machine.

Many examples are available to test the installation in the (vtk_top_dir)/
[graphics|imaging|patented|contrib]/examples[Cxx|tcl|Python] directories.
Most imaging examples require the vtkdata archive to also be located at the
VTK home site. Graphics examples will, for the most part, run as is. For the C++
examples, compile with make and run. Tcl examples can be run by typing the
following from the Tcl examples directory: ../../tcl/vtk example_file.tcl, or, if
vtk has been installed, vtk example_file.tcl. Examples employing the
TkRenderWidget object cause a segmentation fault when using the XFree SVGA
server, but work with the S3 server. (I haven't tested others.) Fortunately,
TkRenderWidget is not required for any visualization pipeline; you can't embed
the render window in a Tk window. However, this problem will likely be solved
by the time you read this article.

James C. Moore is a Research Scientist for Applied Research Associates in
Columbus, Ohio. His interests include numerical simulation of casting
processes, gardening and losing money by fixing old Mercedes. He and Kim

(the real writer) have two daughters, Lorien and Kathryn. Jim doesn't do
Windows. He can be reached via e-mail at jmoore@ara.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Porting MS-DOS Graphics Applications

Jawed Karim

Issue #53, September 1998

Are you hesitant about porting your favorite VGA MS-DOS program to Linux?
Using this tutorial and SVGALIB, porting will truly become a matter of minutes.

I first started VGA programming under MS-DOS, using the popular DJGPP C
compiler. In recent years, this protected-mode 32-bit compiler, which is
basically an MS-DOS port of gcc, has established itself as one of the preferred
compilers in the MS-DOS game programmers' community. DJGPP was in fact
the MS-DOS compiler of choice for idsoftware's game Quake. For the Linux
console port of Quake, the Linux Super VGA library, SVGALIB was used.

When I first decided that I was going to port my own 3-D Model Viewer, jaw3d,
from MS-DOS to Linux, it seemed logical to use the same approach. SVGALIB is
very intuitive and allows me to easily maintain and further develop my 3-D
Model Viewer for both platforms.

I found the easiest way to work with one set of source files for both platforms
was to use preprocessor directives in places where different code was needed.
Since I had already written and used DJGPP's low-level VGA and mouse
instructions for the MS-DOS version, I simply added the equivalent SVGALIB
Linux code in each instance, and separated the MS-DOS and Linux code using
the preprocessor directive #ifdef. The following code snippet represents one of
the many ways in which this can be accomplished:

#ifdef __DJGPP__
...
...
#endif
#ifndef __DJGPP__
...
...
#endif

__DJGPP__ is automatically defined by the DJGPP compiler, and is not defined by
gcc under Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

An additional advantage of using SVGALIB under Linux is the fact that there is
also a DJGPP version of SVGALIB. Let's try not to get confused at this point:
SVGALIB is a graphics library that does some behind-the-scenes low-level VGA
and mouse work for the user. Although SVGALIB was first developed for Linux,
someone eventually released a version that worked with DJGPP under MS-DOS.
Why not use SVGALIB for both MS-DOS and Linux? This would allow us to have
100% identical code for both platforms.

I don't recommend this approach, however, for two reasons. First, when I made
speed comparisons of my 3-D engine between the two platforms, I noticed that
when using SVGALIB with DJGPP under MS-DOS, graphics performance was
sluggish in comparison with SVGALIB under Linux. Second, the MS-DOS
executable was unnecessarily big because it had to be statically linked with the
SVGALIB library. Using SVGALIB under Linux did not seem to present any
problems. Due to the use of shared libraries under Linux, the executable
remained tiny when dynamically linked, and graphics performance was actually
slightly better under Linux than under MS-DOS. For the sake of performance
and executable size, I found it best to use DJGPP's low-level instructions under
MS-DOS and to use SVGALIB under Linux. This makes a difference, especially in
a setting like 3-D engines, where every frame-per-second counts.

The advantage obtained from using the DJGPP port of SVGALIB is the fact that
you can test your SVGALIB Linux code under MS-DOS, without having to reboot.
Except for speed and executable size, both versions of SVGALIB behave
identically.

Note that the DJGPP port of SVGALIB is still in beta, but I ran across only one
minor problem and that was easily fixed. The file vgakeybo.h included with the
DJGPP port of SVGALIB seemed to differ from the file vgakeyboard.h under
Linux; therefore, making cross compilations was impossible in cases where
keyboard code was used. The two files should be identical, of course, and the
solution is to copy the Linux version of the include file over the DOS one.

The three compiler-specific code aspects are VGA, mouse input and keyboard
input. If you have completed an MS-DOS graphics application, you may be using
much of this code already and can quickly add on the SVGALIB equivalent code.
On the other hand, if you do not have any previous graphics programming
experience, you will find the code shown in Listings 1 through 4 to be very
useful.

Listing 1. Include Files

Listing 2. Initializing the VGA Mode

https://secure2.linuxjournal.com/ljarchive/LJ/053/2279l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2279l2.html

Listing 3. Keyboard Code

Listing 4. Mouse Code

Copying a Buffer to Video

In the case of my 3-D Model Viewer, jaw3d, a complete frame is first rendered
onto a buffer which has the same dimensions as the screen, and then copied to
video memory all at once, allowing us to display frequently updated screens
successively without any flickering. This is done as follows:

 memcpy (video_buff, image_buffer,
 DIM_X * DIM_Y);
 /* video_buff was initialized above */
 dosmemput (image_buffer, DIM_X * DIM_Y,
 0xA0000);
 /* 0xA0000 is the video memory in VGA mode
 * 13h */

Waiting for the VGA Retrace

By waiting for the VGA retrace, we are telling the program to wait until the
monitor's electron beam reaches the bottom of the screen. Since there is a
short pause before it jumps back to the top, it is a good moment to switch
palettes without seeing “rainbow colors”. Thus, before switching palettes, we
should wait for the VGA retrace as follows:

 while (!(inportb(0x3da) & 8));
 while ((inportb(0x3da) & 8));
 vga_waitretrace();

Setting the VGA Palette

The following code assumes you have a character array of 768 values,
representing the RGB values for 256 colors. For example:

char palette[768];
 where palette[0] = R value of color 0;
 where palette[1] = G value of color 0;
 where palette[2] = B value of color 0;
 ...
 for (i = 0; i < 256; i++)
 vga_setpalette(i, palette[i*3],
 palette[i*3+1], palette[i*3+2]);
 outportb(0x3C8,0);
 for (i = 0; i < 768; i ++)
 outportb(0x3C9, palette[i]);

Compiling

After adding SVGALIB code to the program, it's time to compile. Simply compile
with the -lvga option to link the SVGALIB library. This library is preinstalled on
most Linux systems; thus, if you experience problems linking it, you probably
don't have it installed and should download it.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2279l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/2279l4.html

jaw3d was programmed by the author and is a Nullsoft Inc. product. Other
cross-platform applications may be obtained at http://www.nullsoft.com/.

Resources

Jawed Karim is a freshman computer science student at the University of Illinois
at Urbana-Champaign and works part-time at the National Center for
Supercomputing Applications. His hobbies include programming and bicycle
road racing. He can be reached at jkarim@students.uiuc.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2279s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Tale of DXPC: Differential X Protocol Compression

Justin Gaither

Issue #53, September 1998

When you have a slow modem and want faster transfer rates, data
compression with this program is the answer.

Once upon a time there was a frustrated engineer who needed a faster way to
remotely display X clients on his home PC. He had a new daughter, and very
much wished to spend time with her without driving back and forth to work.
One day a fellow engineer told him about a fantastic little program called DXPC.
Could it be true? Were all of his problems solved? No, but at least they were
improved.

DXPC stands for Differential X Protocol Compression. It is a small client/server
program that runs on both sides of a low bandwidth link (e.g., 28.8K modem
PPP link), and is designed to exploit “features” in the X protocol to speed up the
remote display of applications across the link. It is capable of compressing the X
messages as much as 10:1. However, not all messages receive such great
performance. Some messages are not compressed at all. On the average, you
can expect as much as 4:1 compression. This sweet little jewel was originally
written by Brian Pane and further developed by Zachary Vonler.

DXPC employs six different compression techniques. First, it strips unnecessary
data fields. Next, it shrinks fields with a limited number of possibilities (i.e.,
Boolean). Using similar techniques, it shrinks fields that are typically small,
while still handling the cases where they are large. The fourth method uses a
cache on each side of the link to store different command types. With this
cache, instead of transmitting full coordinates, it transmits a much smaller

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

differential value based on the previously sent command. Additionally, a cache
of the last six deltas is stored so that it can do further encoding based on a
pattern of deltas. Lastly, DXPC caches large blocks of data that are transmitted
more than once (e.g., X resources). DXPC also employs a text compressor and
an image compressor. For a more detailed description of these techniques, the
authors have included a text file called DESIGN which describes how DXPC
works.

DXPC is a client/server application, but the client and server are the same
executable. The client side is the remote site or the site where the X
applications are executed. The server side is the local site or the site where the
X application is displayed. You must be able to compile DXPC and run it on the
remote site and the local site. Fortunately, the authors have done most of the
porting work for you. DXPC uses autoconf and will compile on most UNIX
platforms right out of the “box”. Additionally, there are ports to Win32 and OS/
2. I compiled it for Red Hat Intel Linux (local) and Solaris 2.5.1 (remote) without
a hitch. Well, one speed bump; I had to add the options -lnsl -lsocket to the LIBS
line in the Makefile for Solaris. I have sent this little gnat to the authors, so
hopefully it will be fixed in the 3.6 release.

Client/Server Configuration

Install

Perform the steps below on both your local station and on the remote site.
Once you have completed this, you are ready to go.

tar xzvf dxpc-3.5.0.tar.gz
cd dxpc-3.5.0
./configure # optionally add --prefix=/home/bubba
make
make install
make install.man

Now the moment of triumph—let's look at an example. At work, you have a Sun
box running Solaris. On this machine, named workhog, you normally run some
expensive CAE (Common Applications Environment) tools that are not available
for Linux. (If only these vendors realized the power of Linux.) At home, you have

https://secure2.linuxjournal.com/ljarchive/LJ/053/2374f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2374f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2374f1.large.jpg

a Linux box named linuxrules that you want to be able to use for more than
Quake and Netscape. You have already compiled and installed DXPC on both
machines, and are sitting at home wanting to do some work. You boot up
linuxrules, and establish a PPP connection across that pathetic 28.8K modem to
workhog. On the screen are two xterms, or rxvts. One xterm is attached to
linuxrules, the other to workhog.

Inside the workhog xterm, type the following three simple commands:

setenv DISPLAY linuxrules:0.0
dxpc -f -s1
setenv DISPLAY unix:8

Then, in the linuxrules xterm, type this one simple command:

dxpc -f workhog -s1

Now you are ready to go. In the workhog xterm, start your very expensive CAE
tool. Suddenly, it's as if your modem has turned into a T1 line. Well, not quite,
but hopefully it is faster than before and fast enough to be useful. The -s1
argument is optional and will report level 1 statistics on the compression ratio.
There is also a level 2 statistics argument, -s2, which prints statistics on all
message types sent.

Conclusion

The compression methods used by DXPC are compressions that cannot be
done by hardware compression in the modem. In fact, I believe it complements
other compression techniques to increase overall performance. The authors
have done an excellent job of developing and maintaining a stable, easily
compiled and easy to use program. I wish I had found it a year ago. Please note
that if you use X authority with a .Xauthority file, some extra steps are
necessary to use DXPC. These steps are covered in the README file distributed
with the source.

Brian Pane informs me that they are preparing to release DXPC 3.6.0 soon. He
has added compression for more X messages.

Resources

Justin Gaither is an ASIC designer for Alcatel Network Systems. He has been a
Linux zealot for three years and hopes to enjoy his 15 minutes of fame. He can
be reached at jgaither@aur.alcatel.com.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/053/2374s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Chess Software for Linux

Jason Kroll

Issue #53, September 1998

Once there was a time when chess software for the home was slow, weak and
expensive. To find human opponents, you had to go to your local chess club.
Today, the situations is different.

Linux offers a host of chess software that provides master strength computer
opponents and analysis, and even an interface for playing against people all
over the world via the Internet.

The strongest chess programs readily available for Linux (to my knowledge) are
Crafty, Phalanx, and GNU Chess. Crafty is the strongest, though Phalanx and
GNU Chess play at master strength (with fast hardware). Crafty is available via
anonymous ftp from ftp.cis.uab.edu/pub/hyatt/ while Phalanx is available from
the standard sunsite (sunsite.unc.edu/pub/Linux/games/strategy/) and GNU
Chess can be downloaded from any GNU archive (prep.ai.mit.edu/pub/gnu/).
The chess interface of choice (compatible with all three) is known as xboard,
though a pretty 3D interface known as GLChess is available (the home page is
http://nether.tky.hut.fi/glchess). The most recent version of xboard should also
be available from any GNU archive, though an older release probably came
with your Linux distribution along with GNU Chess.

Crafty

Crafty is the “long-time hobby” of Bob Hyatt, whose previous works include Blitz
and Cray Blitz. Crafty is a very strong program and is constantly being
enhanced. Though you could just download the Linux binary and use it as is,
opening books and endgame databases are available from the ftp site, and add
much to the playability and strength of the program. You have a choice
between 1 MB (small), 30 MB (medium) and 74MB (large) opening books (or, if
you like, the monstrous wall.gz which expands to 222 MB). For a basic
installation, download the files crafty-14.13.linux, small.zip, start.zip, crafty.doc,
crafty.faq and read.me, or the latest source if you want to compile it yourself.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Give Crafty its own directory (to store the book, game, position and log files),
move the Crafty files there and unzip them. Execute Crafty (if you get a
permission denied error, try using chmod on crafty-14.13.linux).

To create the opening book (book.bin) from the file small.txt to a depth of 60
ply (30 moves), type:

book create small.txt 60

The file books.bin should also be created in order to tell Crafty which openings
it should (and shouldn't) play. The file start.pgn contains the necessary data.
Just type:

books create start.pgn 60

After this brief “installation”, you should have a small, master strength chess
program on your Linux box.

Performance can be maximized by allocating more memory to the hash and
pawn hash tables. I have a 64 MB machine, so I set the options hash=24M and
hashp=10M. Crafty configurations can be specified on startup; this means that
you can include Crafty's startup commands in the resource file of your window
manager for easier Crafty startup in X Windows.

Crafty can be run through xboard, with the Crafty-exclusive benefit of a
splendid analysis mode (compatible with more recent versions of xboard) that
allows you to move the pieces for both sides while Crafty rattles off analysis
several moves deep (you can use analysis mode without xboard, but it's not as
much fun). In order to start up Crafty through xboard, type:

xboard -fcp 'crafty xboard'

or you can specify more options such as:

xboard -fcp 'crafty xboard hash=12M hashp=5M'

Phalanx

Even though Phalanx, by Dusan Dobes, is the youngest of the three chess
programs (it began in '97) it has managed to become quite imposing; in fact, it
is not much weaker than some modern commercial chess software. Phalanx is
also fun to play and good for variety, since Crafty, GNU Chess, and Phalanx all
have different personalities. Phalanx should compile easily without any errors,
and is then immediately functional. It has a small, default opening book, but
creating your own from a PGN (pretty good notation) file is easy; instructions

are contained in the README file. Phalanx can be used through xboard by
typing:

xboard -fcp phalanx

GNU Chess

GNU Chess is the classic chess program which has been around for ages on a
number of platforms. It is also rather strong and quite fun to play. GNU Chess
came with my Slackware and Red Hat installations, and I imagine it comes on
other Linux distributions as well, so you may already have it on your machine. It
is very fun for blitz chess, especially since with its default opening book it is
prone to making original moves which may or may not be very good (this
doesn't matter since it wins anyway). GNU Chess can be played in a console or
under the X Window System through an interface. When xboard is executed, by
default it loads up GNU Chess and prepares for blitz games of 5 minutes per
side. You can, as usual, specify startup options; the xboard man page contains
the details.

Chess on the Internet

xboard can also be used to play chess via the Internet, which is an excellent
way to find fun opponents of all skill levels.

In order to use xboard to play on an Internet chess server, first set up a SLIP/
PPP connection, and then to get to the main free U.S. server, type:

xboard -ics -icshost freechess.org

This will connect you to the Free Internet Chess Server (FICS) through port 5000
and open an xboard display so that you are ready to both observe and play
games. You will first need to log in, of course, and for this you should choose a
handle to use as a guest until you think of one especially clever. To get a list of
the games in progress, type:

games

Then to test the interface, try typing:
obs 6

to observe game 6 (assuming it exists). Your interface should work and you
should see some pieces moving hither and thither; type “unobserve” when
you've seen enough. The commands are quite simple, and the online
documentation is thorough, but if you need help getting started you can ask
other players in channel 1. A great many chess servers exist throughout the
world, including Grandmaster Dzindzichashvili's chess.net, the (commercial)

Internet Chess Club chessclub.com, and the main European free server
eics.daimi.aau.dk; I imagine any of these would be happy to have new players.

Conclusion

Those of us who were made to suffer at the hands of Sargon in the days of the
Commodore 64, tormented by the malicious characters of BattleChess, or
politely dismantled by Chessmaster, now have the pleasure of choosing a
variety of master strength programs to defeat us on our modern machines (the
struggle to prove a consistent match to the ever-improving Crafty is being
made into a movie, apparently to be called Searching for Holes in Crafty's
Opening Book). However, today's computers also provide the frustrated chess
player with relief that computers did not offer when the Commodore 64 was
king: Internet chess, featuring human players, complete with mistakes and
oversights that computers don't make anymore.

Jason Kroll is a student of economics at the University of Washington. He likes
music, computers, and chess, and thinks that Linux is the best thing to happen
to computers since monitors (or at least since the Amiga). He can be reached
via e-mail at hyena@u.washington.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

LJ Interviews LDP's Greg Hankins

Marjorie Richardson

Issue #53, September 1998

With the next Atlanta Linux Showcase (October 23-24) looming on the horizon, I
decided it was time to get in touch with Greg Hankins, coordinator of the show
and maintainer of the Linux Documentation Project.

With the next Atlanta Linux Showcase (October 23-24) looming on the horizon, I
decided it was time to get in touch with Greg Hankins, coordinator of the show
and maintainer of the Linux Documentation Project. We “talked” by e-mail
about him and the show on June 1.

Margie: Let's start off with some personal information. Tell us about where you
live, go to school, etc.

Greg: I live in Atlanta, GA, where I have been since 1988. Before that, I spent
most of my life in Germany where I went to a German school through the 10th
grade. When we returned to the U.S., I began the 11th grade in high school and
decided that the only thing I wanted to do was to go to Georgia Tech (a
technical university located in Atlanta) to study computer science. Ten years
later, I'm still at Georgia Tech—I received my bachelor's degree in 1996 and I'm
now half-way through the master's program.

I've been into computers since I was about 12 years old, when I started playing
on our Apple][+. I got started with UNIX around 1990, when I instantly
recognized it as the Right Thing. In fact, I even bought an old AT&T UNIX PC so I
could have a home UNIX box. I started using Linux in the spring of 1993, and I
still have the set of floppy disks I used for installation (SLS 1.01 distribution, I
think).

In real life, I'm a Network Engineer at MindSpring Enterprises, an ISP with
nation-wide coverage. My group is responsible for the daily care and feeding of
our WANs and LANs, upgrading and expanding our network and evaluating
new networking technology. I am fortunate to also have a wonderful girlfriend,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

who somehow manages to keep me from spending all my time in front of a
keyboard.

Margie: What do you for fun—do you have time for fun?

Greg: With school, work, Linux projects and trying to have a life, I do keep quite
busy. Linux is supposed to be fun, so I guess all my Linux projects count as fun.

One of my hobbies is enjoying beer. I am an avid beer enthusiast, and I
maintain a constantly growing collection of self-quaffed beer bottles and
paraphernalia—at present, over 450 unique bottles. I attempted home brewing
a few times and have even tossed around the idea of becoming a certified beer
judge.

I also enjoy British humor such as Monty Python, Young Ones and the like,
science fiction such as Dr. Who and Star Trek, computer history and old
computers (that would explain the PDP-11 in my bedroom) and bad puns. I'm
also fascinated by anything related to computers and high-tech toys—in that
aspect I'm pretty much a standard geek.

Margie: The Atlanta Linux Enthusiasts seems to be a very successful user group.
Tell us a bit about how it got started.

Greg: Well, it all started in 1994 with the “gtlinux” mailing list, a list we set up for
students at Georgia Tech to discuss Linux. Some of the people from the list
decided to form an Atlanta Linux users group to include students, professionals
and enthusiasts in the metro Atlanta area. A posting to
comp.os.linux.announce attracted ten people who wanted to help, and on
December 15, 1994 the group was founded. We named it the Atlanta Linux
Enthusiasts (ALE). Over 100 people showed up at our first meeting in January,
1995.

We intentionally have no formal charter, membership or organization. This
keeps things simple and seems to work well. All people have to do is show up at
the meetings—that's it. We decided on a meeting structure similar to the
Atlanta UNIX Users Group (AUUG) meetings, which have been going strong
since mid-1980.

Margie: What sort of programs does the group put on to keep people
interested and coming to meetings?

Greg: We simply put on exhilarating monthly meetings and Linux conferences!
Each month we have a speaker for our meeting. We try to vary our topics
somewhat, in order to appeal to all levels of users. If we can, we alternate
monthly between “new user” and “advanced user” topics. There is also a free-

form session at the end of the meeting where anyone can ask a question of the
group. This gives people a place to go for help, as well as information. Most of
our talks are given by ALE members; we have very few talks about commercial
products given by vendors. We typically have around 50 people at our meetings
—many people are regulars, but I do see new faces each time.

From time to time we've also had free pizza and Coke at a meeting or put on
fundraisers (for example, I sold Dr. Linux and Red Hat CDs a few times). Door
prize drawings are frequent, as many vendors send us CDs and books to give
away. We will probably be doing an install fest in the next few months.

We also maintain a mailing list for our group. People use the list to ask
questions about their Linux problems and to discuss Linux and related topics.
There are over 200 people on the list, many from outside Atlanta and even
some from outside the U.S.

Margie: Does ALE appeal to one group of people, such as students, more than
another?

Greg: I'd say that we have a very good mix of professionals and enthusiasts in
the group as well as quite a few students. We happen to meet on the Georgia
Tech campus, but that hasn't affected the attendance mix in a big way. We
certainly encourage everyone to attend and don't discriminate in any way.

There is a local Georgia Tech group, but they focus more on specific problems
the students might have, such as using the dorm networks. A group at Emory
University is forming for the same purpose.

Margie: Last year ALE put on a very successful Linux exposition, the Atlanta
Linux Showcase, and is planning to do it again this year. Can you tell us some of
the reasons last year's show was such a success?

Greg: Yes, we did put on a very successful Linux show last year. It was an all-
volunteer-run conference and trade show organized entirely by our users

group. The thing that made it possible was an extremely dedicated core group
of people who gave hundreds of hours of their time to support something that
we passionately believe in—Linux. It was also to our advantage that we had an
extremely diverse group of people who volunteered. For example, different
people had prior experience with trade shows, accounting, printing, graphic
design and other useful things.

We gave everything from time to loans from personal funds in order to make
this event work. Linux International also helped us; in fact, it was Jon “maddog”
Hall who first approached us with the idea of putting on a “small” show—little
did we know what it would grow into. We basically had no capital and no legal
organization that could sign contracts. Linux International provided critical
support in those areas—we provided the hard work.

I think we had a combination of good conference programs and vendor
exhibits, as well as a great location for the show. Atlanta is a great city for
conventions. We have the facilities, a big airport, good transportation and many
things to do and sights to see, which provided people with entertainment in the
evenings. I think people had fun. It was great to see so many people in one
place all talking about Linux.

Since then, we have taken the profits of last year's show and invested them in
the next show. We formed a small corporation to give us legal standing and
protection and have also been dealing with taxes and getting approval as a
credit card merchant. Many rules and regulations exist which complicate things,
and an enormous amount of determination and effort is required to make
things fall into place. We're learning how to run a not-for-profit business, all in
our spare time!

Margie: Any disasters to report?

Greg: I'm pleased to report we really didn't have any disasters, other than a
noticeable lack of sleep on our part. The show was organized in about four
months, which is a very short amount of time to organize any size conference
or trade show. Many large conferences are planned years in advance, and the
time frame in which we organized the show presented a few problems of its
own. For example, booking exhibit space is almost impossible with only a few
months' notice. We completely missed advertising deadlines and were too late
in many cases to even get on upcoming event calendars. We've been planning
our next upcoming show for over a year.

Another problem was dealing with money. Since we were an unofficial
organization, we could not accept credit cards and thus could only accept cash
or checks from conference attendees. We also had to put our checking account

in the name of one of our organizers, instead of the name of the show. This
year, we have fixed both of these problems.

Margie: What are the plans for this year's show? Speakers? Highlights? How
many people do you expect to come this year?

Greg: Our plans for this year include two days of technical and business talks
about Linux, free and Open Source software, and vendor exhibits. Dr. Michael
Cowpland, President and CEO of Corel, will be our keynote speaker. Jon
“maddog” Hall, Bruce Perens and Eric S. Raymond are among our initial list of
speakers. We're also planning BOFs (Birds of a Feather), a fundraiser dinner
and a terminal room, which will be a great place to meet other people in the
Linux community. The exhibits and activities will all be free, and the conference
sessions will be reasonably priced with pre-registration and student discounts.
By the time this interview is printed, we will have our on-line registration
system running.

One of the highlights is our “Linux in Action” booth. This booth is staffed by ALE
members, and it's a great place for people to use Linux hands-on. We demo a
wide variety of hardware and software running Linux with theme areas such as
“servers”, “windowing systems” and “productivity tools”, showing people what
Linux can do. Attendees are free to use the machines and software packages
and ask questions of ALE staff. Last year we had Linux running on over 15 Intel,
Alpha, SPARC and PPC boxes, using five Linux distributions and loads of
software. It was quite a popular attraction.

This year our goal is to double the show size. We are running ads in Linux
Journal, Boardwatch and Sys Admin as well as launching an electronic ad
campaign. We're planning for 1000 to 2000 attendees. We had 500 people
attend last year with no national advertising and only a few months of
electronic advertising, such as postings to c.o.l.a and contacting users' groups.
Our show also follows NetWorld+Interop, one of the largest networking trade
shows in existence. We hope to draw some of the attendees to our show in the
same way that we followed COMDEX last year.

As for exhibitors, our goal is to fill 40 booths with vendors showing off Linux
and related software, hardware, CDs, books, shirts and whatever else they wish
to bring. Last year we had 25 vendors on the show floor, a record number at
that time for a Linux show.

Margie: Anything in particular that you plan to do differently?

Greg: Yes, a few things. We're excited about the amount of time we have to
plan this show, since we basically started planning it right after the 1997 show
ended. With over a year to prepare, we're going to be able to do a lot more.

One of the biggest things we learned was that Friday/Saturday shows always do
better than Saturday/Sunday shows. We had great attendance on Saturday last
year, but Sunday was noticeably slower. This year our show starts on Friday
and actually overlaps with NetWorld+Interop that day, which will be a mere
three blocks away.

We also learned many small lessons. We met with each vendor that exhibited
last year to find out if they had any comments or advice about the show. We
learned things through experience, what worked well for us and what we could
have done differently. There truly is no substitute for experience.

Margie: ALS sounds like it will be a fun and worthwhile conference for those
who attend. Let's move on—tell us a bit about the Linux Documentation
Project.

Greg: The Linux Documentation Project (LDP) was started in order to write
documentation for the Linux operating system. According to the collective
memory, it was started sometime in 1992 by Michael K. Johnson, Matt Welsh
and Lars Wirzenius.

The overall goal of the LDP is to write documents that cover installing,
configuring and using Linux. For information about the LDP, visit the LDP home
page at http://sunsite.unc.edu/LDP/. You can find all the documentation in the
LDP collection, as well as many useful links and information. The LDP home
pages were some of the first Linux-related pages on the Net when Matt started
writing them in 1994, and they have accumulated a lot of information since that
time.

We have four basic types of documentation: guides, HOWTOs, man pages and
FAQs. Guides are entire books on complex topics; for example, Linux
Installation and Getting Started and the Linux System Administrators' Guide.
HOWTOs are detailed “how to” documents on specific subjects, such as
networking, SCSI or hardware compatibility. The man pages as well as many
FAQs, including the Linux FAQ, are also produced. We have a few special
documents that you can find on-line on the home page, such as Linux Gazette,
the Linux Kernel Hackers' Guide and certain HOWTOs.

Many translation projects and non-English LDPs have been formed and more
are starting. Links to these projects can be found on the LDP web pages. We
also support them by getting some of their work archived on sunsite. This way

the documentation is easily accessible, and also gets distributed on CD
archives.

Margie: What is your part in the LDP?

Greg: I joined the LDP in the fall of 1993 when I started the Serial FAQ after
many frustrating hours of trying to get getty running on my box. This FAQ later
became the Serial HOWTO, which I maintained until a few months ago. I had to
give this up recently due to a lack of time.

I took over the HOWTO coordination from Matt in 1995, and managed the
HOWTOs until April of this year, when I found a new victim/volunteer to take
over for me. I decided to give this part of the LDP up too, again due to lack of
time and a lack of enthusiasm.

Now I'm pretty much responsible for the LDP web pages and the overall LDP
coordination as well as acting as a point of contact. I also maintain the /docs
directory on sunsite and whatever else happens to fall into the documentation
area.

Margie: Are there particular guidelines for submitting documentation to the
project?

Greg: The most important thing to remember is to contact us first, and to get
approval if you are interested in contributing to the LDP. In order to coordinate
the documentation effort, we need to be aware of all the work different people
are doing. This way, efforts are not duplicated and wasted. I have had to turn
away several submissions because they were duplicated or, in some cases, not
appropriate for the LDP.

We have set a standard of using LaTeX for the LDP Guides (large book-like
references), and using SGML for the HOWTOs (short, specific “how to”
documents). Currently, a package called “SGML Tools” is used to take the SGML
source and produce PostScript, DVI, HTML and plain text output. All
submissions must follow these standards so that we can provide a common
look for the formatted documents and effectively manage the sources.

Margie: What other Linux projects are you involved in? Do you do any
development?

Greg: No, I don't do any development. For some reason, I dislike programming
so I help out in other ways. The LDP and ALE/ALS are my primary Linux
projects, but I have also been known to help maintain sunsite's archive, and I
have reviewed a few Linux books here and there.

Margie: What do you think is the most exciting project happening with Linux
today?

Greg: I think the most exciting thing is that Linux is finally being recognized as a
viable alternative and contending OS. (Of course, we knew it all along.) It is
essential to have an alternative to Microsoft—I'm not interested in using the
square wheel they re-invent every few years. 1998 has been a great year for
Linux; just look at all the attention it's been getting recently. The trade
magazines (both on-line and printed) have been full of Linux reviews and
stories. For example, InfoWorld awarded the “1997 Best Technical Support
Award” to the Linux community. It's good to see all the hard work by the
developers and commercial companies paying off.

I'm also excited to see a lot of projects that have the goal of making Linux
easier, more productive and more fun to use. Projects such as GNOME, GIMP
and Linuxconf, to name a few, are providing Linux with some killer applications
and tools. The Linux Standard Base (LSB) being set up by Bruce Perens should
also be an interesting project.

Margie: Any parting words?

Greg: Just a couple of e-mail addresses and a URL. I can be reached via e-mail at
gregh@sunsite.unc.edu. I'm always interested in comments about the LDP web
pages or about the LDP in general. The HOWTO coordinator can be reached via
e-mail at linux-howto@sunsite.unc.edu.

If you are interested in the 1998 Atlanta Linux Showcase or the Atlanta Linux
Enthusiasts, visit our web site at http://www.ale.org/.

Margie: Thanks, I'll take a look today.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Migrating to Linux, Part 2

Norman M. Jacobowitz

Jim Hebert

Issue #53, September 1998

We continue with our look at converting an office from a commercial operating
system to Linux.

Welcome to the second article of our three-part series on migrating to Linux
from a commercial operating system. Our first installment (in August) discussed
many reasons why a non-technical, small office or home office (SOHO) end user
might abandon their commercial OS and adopt Linux. This month, we'll explore
several pointers SOHO Linux users may find helpful in making their migration
safe, comfortable and productive. We'll also investigate some of the software
tools, both commercial and Open Source, that SOHO users may find useful.
Finally, we'll discuss interfacing and sharing files with our friends, clients and
colleagues who have yet to see the light and join the Linux camp.

We assume the reader has one of the many fine Linux distributions installed
and working. If you have not yet taken the plunge and installed a Linux system,
please read on anyway. Hopefully, every current or potential SOHO Linux user
will gain a more complete understanding of what it takes to use Linux in a
SOHO environment.

Do You Have to Become an Expert?

One obstacle preventing SOHO users from considering Linux is the “hacker
mystique” surrounding the OS. To many new users, Linux has the image of an
expert's paradise, a playground for gurus only. We did much to explode that
myth in our first article. Still, for many potential Linux users, the unanswered
question remains: how hard and time-consuming is it to maintain a Linux
system in a SOHO environment?

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Once your system is installed and configured, you may discover that
maintaining it is not that hard. You will not have to become an expert in system
administration, nor will you necessarily have to spend much time logged in as
root performing administrative tasks. In fact, you may end up spending a bigger
percentage of your time actually working rather than dealing with the system.
Is maintaining a SOHO Linux system any easier than other operating systems?
Not necessarily, but many find that once they have developed a core of basic
competencies, running their SOHO Linux systems is no harder than
maintaining any other OS.

The Tasks at Hand

In order to gain confidence in ourselves and our Linux systems, SOHO Linux
users need to be proficient in several key facets of system administration. The
minutiae of all the various commands and tasks are beyond the scope of this
article. Therefore, we will focus on those we feel are most important to SOHO
users: maintaining software, performing regular backups and, in case of
emergencies, boot/root disk use.

What is System Administration?

For the SOHO Linux user, basic system administration means all of the work
done to keep the machine up and running smoothly, such as installing/
upgrading software and removing old files—for more accomplished users, it
may mean compiling a custom kernel. Notice that our needs and
responsibilities are considerably less than those of an administrator looking
after a network of servers and workstations. Here are several key pieces of
advice which you may find helpful:

• Be self-sufficient—invest in at least one decent Linux manual (see
Resources). Locate and bookmark some of the many Linux
documentation sites on the Internet. Read all available documentation
before posting questions on the newsgroups. These suggestions may
seem obvious and elementary, yet anyone who reads the newsgroups
knows how many well-documented, easily-solved problems are repeated
over and over again, wasting a lot of valuable time and energy for both
the posters and those trying to help them. On the other hand, don't try to
learn everything—there is just too much to know. Keep your Linux
information resources handy and use them as a reference library.
Whenever you are stumped or run into a problem, have your resources
available and know how to use them. Especially at first, it is better to
concentrate on “how do I look it up quickly” rather than trying to
memorize individual commands.

• Keep an eye on the updates and recent developments going on in the
Linux software community, in particular as they pertain to the distribution

you are using (see Resources). You will occasionally need to install or
upgrade software as bugs and security problems are detected. You don't
need to spend hours every day reading about Linux. One reasonable
schedule is to spend at least an hour every 10 business days cruising the
relevant web sites for recommended software updates and new tools that
may help you get your work done. The kind and patient souls who read
the newsgroups will thank you for reading about these updates before
posting problems.

• Once you have your system installed and set up to your liking, do not log
in as root unless absolutely necessary. Again, this is an elementary rule
that Linux gurus usually follow, but SOHO users need to be wary and
avoid this pitfall. It's truly hard to cause a full system crash in Linux—
unless you are foolishly mucking about while logged in as root.

• Take the time to learn a little about the bash shell. Most Linux manuals
have at least some introduction to bash and various shell commands, but
a more comprehensive look may be in order. Knowing bash well can save
you time. When tinkering with bash, remember point number one above:
don't bother memorizing every command, but do keep your manual
handy.

• After you have learned a bit about the system, made reliable backups and
are feeling comfortable with Linux, you may want to try compiling a
custom kernel. This exercise will teach you a lot about the way Linux
works and may make your machine run a little faster than the generic
kernels shipped with most distributions. The guide published in Linux
Journal's November 1997 “Kernel Korner” is one of the best concise guides
to kernel compilation available. Read it, and if it seems to make sense, go
for it. It's a fun and enlightening way to learn more about your system.

• Trust Linux and the people behind it. It's a powerful, reliable tool for the
small or home office. The thousands of developers worldwide who work
on it have seen to that. After all, that's why we are migrating, right?

Why Bother with Backups?

Here's a personal story from one of the authors that illustrates exactly why we
all must make regular backups. I'll never forget it. It was late at night, and I was
on a tight deadline, cranking out a major project for a client. Then, I heard it. A
rattling noise, like a backgammon player shaking a cup of dice. Yes, my hard
disk had just croaked—I was hearing the heads skipping across the platters in
my hard drive. The machine would not reboot, nor could I access any data on
the drive. After a few seconds of panic and terror, I tore open my desk drawer
and cradled what at that moment was my most prized possession: a recent
tape backup of that entire hard drive. The next morning was a flurry of intense
activity. I notified clients of a brief delay. I contacted my computer
manufacturer (the disk was under warranty) and demanded a new hard disk—

of course, it would take 10-14 days. I ended up running out and buying a new
disk, installing it, reinstalling all my software and restoring most of my precious
work from that tape. Eventually, the manufacturer replaced the dead disk.

The moral of the story? Disasters can and do strike ordinary people doing
ordinary things on a computer. Your responsibility is to be prepared. In my
case, the hard drive crash was softened from a disaster to an inconvenience, all
because I had that backup tape. Fortunately, Linux comes complete with a set
of utilities that make backups safe, easy and reliable. Plus, several commercial
and free software options exist to automate and simplify the backup process.
Ideally, backups should be performed daily. In reality, doing a full backup about
twice a week is a reasonable schedule for most SOHO users. Plus, if possible,
store every other backup off-site. Even if your spouse or parent takes one tape
or disk to work and brings back the other one, you are reducing the risk of
losing your backup to fire or theft. Never leave your backup media sitting in the
backup device.

If you don't have access to a backup program, Linux has several options to tide
you over until you get one. Probably the most used is the tar command, which
you should have at least an understanding of, even if you end up using a
different backup option. Spend some time looking at the tar man page. Check
your Linux manual; most give a fairly thorough analysis of this key backup
option. At the very least, until you have a more reliable backup routine, copy
key files to a floppy using the cp command.

Boot/Root Disks

Assume it's 9 AM on a weekday. Your client expects delivery of a key project by
noon. You finished it last night at 11:30 PM, after hours of revision and several
pots of coffee. All you have to do now is boot up your machine, print out a final
copy and fax it off. Except for one little problem: you machine refuses to boot.
Only three hours until your deadline—what now?

Linux will rarely choke, provided you are not tweaking with the system or
mucking around while logged in as root. However, some hardware failures can
sneak up on you. In any case, you must be prepared to act when your machine
doesn't want to boot. That means having and knowing how to use a good set of
Boot/Root disks, also known as rescue disks (see Resources).

The Boot/Root disk may one day turn out to be your best friend. While a
comprehensive set of instructions are beyond the scope of this article, you
need to understand how to use them. Many distributions come with a set of
boot disks that double as emergency disks, or you can download a pre-built set.
In any case, get them and know how to use them before a disaster strikes.

Getting Stuff Done

Now that we have covered guidelines for basic system administration, it's time
to think about doing some work. Fortunately, the last several months have seen
an explosion in the amount of productivity software—both free and
commercial—available for Linux users.

As for the Open Source versus commercial software debate, the choice boils
down to the preferences and budget of the user. Most users will end up with a
hodgepodge of both free and commercial software on their systems. SOHO
users, additionally, have their limited time and accountability to clients or
colleagues to consider when making their choice. Our advice is to thoroughly
check the capabilities of any software you plan to use.

Let's look at an example. Say it costs you $100 to purchase a piece of
commercial software and you figure it will take four hours to install, configure
and gain familiarity with the product. Now compare that to an Open Source
product. While you pay nothing for the software, it may take you ten hours to
install and become comfortable using it. Which product do you choose? It's up
to you and your priorities. Just remember: Open Source does not always mean
free of expenses, while commercial software can never be automatically
assumed to be easier to use or of higher quality. Judge each package by its
individual merits and make the right choice for yourself.

Regardless of your choice, we believe it is up to us as SOHO Linux users to
provide positive feedback to both commercial developers and the kind souls
who develop Open Source packages. Linux is the best SOHO/workstation OS on
the market right now, but most commercial developers have yet to embrace it
with the support it deserves. On the other hand, we can't expect free software
developers to fill all the voids left in the Linux software library. By rewarding
those commercial developers who do port their software to Linux, we can
encourage others to do so; and by using Open Source software, we encourage
the type of cooperation that has made Linux the great OS it is today.

Does this mean any one development model is the best option for SOHO
users? No, we are merely suggesting that if you do choose to use commercial
software for Linux, please be sure to obey the developers' licensing restrictions
and give positive feedback or bug reports on the product, if applicable. If you
are using Open Source packages, please consider contributing to such
development efforts, by donating your own time or perhaps even financially, if
you can.

Applications ... Applications ... Applications ...

Too many useful Linux applications exist to list them here. For the SOHO Linux
user, a few key applications are available which do bear mentioning in this
context. As for the other possible software tools, we should remember number
two on the list of recommendations made earlier: know where to find good
catalogs of Linux software (see Resources).

One of the biggest news items to hit the Linux community recently is the
announcement from the Corel Corporation. Corel has committed to porting its
productivity applications to Linux. For those of us who use our Linux boxes for
earning a living, this is indeed welcome news. Corel's announcement, along
with the continuing evolution of other Linux software, means that most Linux
users may no longer have any reason to boot another OS.

Most SOHO Linux users will do the vast majority of their real work while in the X
graphical environment. While there are at least a dozen useful window
managers (see Resources) for Linux, the two user environments making the
biggest headlines right now are the K Desktop Environment (KDE) and the GNU
Network Object Model Environment (GNOME). A commercial option is the
Common Desktop Environment (CDE). While many developer types and other
gurus have different reasons to prefer one over the other, we SOHO users will
most likely end up basing our choice once again on personal preference.

When you mention productivity, especially for SOHO users, the first thing that
comes to mind is a good, full-function office suite. Right now, the two “biggies”
in the Linux community are Applixware and StarOffice. Corel's port of its office
suite will add a third option. As for e-mail and web surfing, Netscape's decision
to open the source code for its Communicator 5 is perhaps the best news for
the SOHO user. Until that product reaches maturity, Netscape's Communicator
4.0x will meet most users' needs.

Soon, we can look forward to at least one full-featured financial management
program—a la Intuit's Quicken line of software—known as GNU Cash. As for
graphics and graphic manipulation, we have the GNU Image Manipulation
Program (GIMP) which rivals Adobe's PhotoShop. Corel has also ported their
CorelDraw program; as they port the rest of their commercial applications to
Linux, we hope they will take the time to update the package.

Sharing Data

While trying to make up your mind about which software you'd like to use, pay
particular attention to whether or not you will need to share files with your
non-Linux friends or colleagues. This is especially important for users of the
various office suite tools. For example, will you be able to share and save your

files in a de facto standard format such as Microsoft Word (.doc)? Or will you be
forced to save and share your files in another format like Rich Text Format
(.rtf)? Either way, you need to be sure your clients and colleagues will be able to
use the files you produce for them.

Another key skill for integrating with non-Linux users is the ability to mount,
read from and write to MS-DOS, VFAT and HFS floppies and other removable
media. This will enable you to share floppies with Microsoft and Macintosh
users. Check under the mount command in your Linux manual and read the
man page for mount and also the MTOOLS and HTOOLS utilities.

Until Next Time

We've talked a little about basic system administration, software for the SOHO
user and sharing files with our colleagues. Let's sum up a few of the key points:

• Make yourself as self-sufficient as possible by owning at least one
comprehensive Linux manual, bookmarking and regularly visiting major
Linux software web sites, judicious use of relevant IRC channels, and
refraining from posting to newsgroups until you have exhausted other
avenues of help.

• Make reliable, frequent and regular backups, using any supported
removable media, and storing the media off-site, if possible.

• Acquire and learn to use a good set of Boot/Root or emergency disks.
Your choice as to which distribution to use may be influenced by whether
or not it comes with a pre-built, comprehensive set of recovery disks.

• Don't be intimidated—you don't have to be a major guru or techie to get
your work done. Following these simple guidelines should have you on
your way to running a solid, reliable and stable SOHO Linux setup.

• Carefully weigh all options before investing time and money in software.
One of the greatest benefits to using Linux is the freedom of choice—find
the packages best for you.

• Be aware of how to share files and data with your non-Linux colleagues,
clients and friends. Successfully interfacing with non-Linux users will make
your life easier and may serve to win a few more Linux converts.

Well, now we know a little bit more about what we face if we choose to “go
Linux” and leave our old OS behind. Next time, we'll move away from practical
issues and discuss the future of Linux as it applies to the non-technical, SOHO
end user. We'll also talk about how SOHO Linux users can get help from each
other, without overwhelming the newsgroups and other traditional avenues of
support. See you next time.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/053/3042s1.html

Norman M. Jacobowitz is a freelance writer and marketing consultant based in
Seattle, Washington. Please send your comments, criticisms, suggestions and
job offers to normj@aa.net.

Jim Hebert spends his spare time coming up with Stupid UNIX Tricks and dating
the love of his life. He can be reached via e-mail at jhebert@compu-aid.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:normj@aa.net
mailto:jhebert@compu-aid.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

SockMail

Noah Yasskin

Issue #53, September 1998

SockMail is described by its creators as a “100% Java client/server e-mail list
management system”, and it is just that.

• Manufacturer: Sockem Software
• E-mail: info@sockem.com
• URL: http://www.sockem.com/
• Price: $295 US
• Reviewer: Noah Yasskin

E-mail saves time and money, particularly when you want to send multiple
people the same message. One hundred letters can be sent as easily as one
letter, and for the same price—absolutely nothing. Because of this, e-mail is the
natural choice for distributing identical information to a group of people. Along
with its benefits, though, e-mail has brought its share of problems—the biggest
one is spam. However, just as there are legitimate uses for bulk mail, there are
legitimate uses for mass e-mail mailings.

The Digital Mail Room

Smart companies on the Internet are replacing expensive paper mailings with
digital mailings whenever possible. It looks antiquated when a company—
especially one in the computer industry—sends me a press release by mail.
Doing so reflects poorly on its understanding of technology. Physical goods

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

can't be delivered digitally, but information is destined to be transmitted like e-
mail: effortlessly and inexpensively. However, many businesses are already
having a difficult time managing the flow of e-mail and can easily have
numerous mailing lists with thousands of addresses. Sockem Software's first
product, SockMail, was created to help organizations effectively use lists of e-
mail addresses. SockMail is described by its creators as a “100% Java client/
server e-mail list management system”, and it is just that. Web sites
overburdened with extensive lists of e-mail addresses will find this application
valuable.

Figure 1. SockMail Window

Sockem Software: A Java Start-up

Sockem Software is a 100% Java software start-up based in New York City's
“Silicon Alley”. The company is focused on Java because it believes the
language's multi-platform and networking strengths will be successful in the
marketplace. Java will provide the foundation for all of Sockem Software's
client/server applications. In the company's eyes, a browser with a JVM (Java
Virtual Machine) is the universal client. If Java is the mantra of Sockem
Software, e-mail is the mantra of SockMail.

Sign Me Up

Web sites commonly have a text box in which people can sign up to be included
on or dropped from a mailing list. This is usually done by having a CGI
(common gateway interface) such as a Perl script send the information to
someone who then manually adds and deletes names on a list of subscribers. It
is difficult to automate this process with scripts and clumsy to paste names into
a mail program in the blind copy field. SockMail's primary goal is to make the
whole process of creating, maintaining and sending out information to lists of
e-mail addresses as efficient as possible. It's a very simple and focused
application that doesn't do much more than that. Users do a lot of the work by
adding and deleting themselves from mailing lists. This is its big selling point for
companies wanting to automate their web site subscription lists. SockMail's
interface is functional but not pretty—it has the look of a shareware
application.

Listserv and Majordomo

Unlike Listserv and Majordomo mail programs where users send commands
within an e-mail to add or delete themselves from mailing lists, SockMail's lists
are maintained through Java applets. Additionally, SockMail doesn't allow
posting to people on a list. It is specifically designed for sending out mail to
lists, not to facilitate communication between people on a list. A Listserv or

https://secure2.linuxjournal.com/ljarchive/LJ/053/2933f2.jpg

Majordomo system could be configured to have much the same functionality as
SockMail, but these systems are more difficult to set up and maintain. SockMail
is much easier to install and integrate with a web site or Intranet; however, it
could never replace a Listserv or Majordomo program.

Figure 2. E-mail Window

Target Market, Target Mail

SockMail is designed for businesses with mailing lists of no more than 50,000
people. This number should be adequate for all but the largest company
mailings and will hopefully dissuade spammers from abusing the application. It
is an ideal tool for distributing press releases, e-zines, company updates,
invitations or any targeted mailing. A large company could also manage internal
mailing lists easily with SockMail. It is not designed for blind mass mailings or
spamming. This product could be used to do that, but its potential to send out
truly massive lists is limited. The lists have to be loaded into the browser, so
available memory limits the potential number of recipients. Additionally, the
server may run into memory problems sending to lists of over 50,000 names. In
part, this is because Java uses static memory allocation for its applications. By
default the server allocates around 20MB of memory, and this limit can be
raised or lowered using options in the Java interpreter.

100% Java Installation

SockMail can be installed via a command line or GUI (graphical user interface).
The application installs in literally seconds because the whole thing is only
197KB. It is designed to be purchased and downloaded over the Internet and is
not available on CD-ROM or floppy disk. However, because SockMail is truly
platform independent, it requires the use of the command line to start the GUI
installation. This could be a little confusing for the novice Windows NT user, but
a system administrator or anyone used to UNIX should have no problem
getting the install up and running.

Figure 3. Preference Window

The install is done with JShield because the company insisted on keeping the
application 100% Java; WinInstall uses Windows native code. However, it is not
just a case of getting hooked on Java. Since it is 100% Java, the whole program
can be installed remotely using TELNET. Most servers have remote
administration capabilities, but taking its network-friendly cue from UNIX,
everything on SockMail can done without being on a console. On Windows NT,
this type of remote installation is rare, and Sockem Software has done a good
job of building this functionality into the application.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2933f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2933f4.jpg

The Server

To deliver client applets, the SockMail server must be running on the same
computer as a web server, which limits its scalability. SockMail Pro, due out
soon, will be able to run independently of a web server. The SockMail server
has its own 100% Java database used to store e-mail addresses. It is a
proprietary database without JDBC (Java database connectivity) functionality
which could lead to problems in an enterprise setting. The server processes all
requests from clients to add and delete names from lists and must have access
to a local JVM (Java Virtual Machine). Although the server component is 100%
Java, it can't function on most Windows 95 or Macintosh desktops, because
most JVMs for Windows 95 and Macintosh don't support the TCP/IP socket
connections the SockMail server needs. Security must be set up once the server
is installed. Security features include an administrative login, IP filtering and
separate administrative port. Only one user login is allowed. The server can
handle multiple tasks, simultaneously updating one list and mailing to another.

Figure 4. Server Window

The Clients

SockMail uses three client applets: one to administer the server, one to add and
one to delete addresses. Users can add and delete themselves from lists, but
mailings can be performed only from the administrative applet; this applet is
just 85KB and loads quickly. The add and delete clients are less than 30KB each.
The applets can be customized to fit the look and feel of a particular web site.
The clients run on any browser with a Sun compatible JVM version 1.02 or later.
In case users don't have a Java-enabled browser, SockMail includes two HTML
forms with CGI scripts. These can also be used to add and delete addresses.

Built-in Intelligence

SockMail includes the ability to intelligently retrieve e-mail addresses from web
sites. A spider can search an entire web site, collect any e-mail addresses and
add them to a specified list. This feature could give the product a bad name;
however, the spider can search only about 1000 pages before running out of
memory. This limits its usefulness as a tool for spamming. For quickly scanning
a single URL, however, the spider works well. It is a useful tool for collecting
contact information. It only picks up addresses after the mailto attribute.

To be more web friendly, the spider identifies itself as a robot. Webmasters can
put configuration files on their pages to inform the spider not to search the
site. As these intelligent agents become common, sites not wanting to be
searched are starting to deny access to them.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2933f5.jpg

SockMail also includes an easy way to check the InterNIC database for
information about an e-mail address. For any registered domain, SockMail can
query the InterNIC to find out the technical, administrative and billing contact
information.

The Potential for Linux and Java

Sockem Software is a strong supporter of Linux. The company moved its own
web site off of Sun Solaris and is a complete Linux shop. SockMail was
developed on Linux boxes using Emacs, the newest versions of which have Java
editing tools. The biggest advantage to developing Java on MS Windows
remains the visual editing tools that are available on that platform. However,
many visual development programs use version 1.1. of the JVM, which can lead
to incompatibilities with version 1.0 used by most older browsers. By
developing on Linux, Java programmers are assured they will be developing
100% Java because there are no proprietary JVMs on Linux. Organizations such
as Blackdown (http://www.blackdown.org/) ported the JVM to Linux, and
standard distributions of Linux include a JVM.

Looking Forward

Sockem Software is planning a SockMail Pro version, due sometime soon. This
will address some of the current product's shortcomings. One limitation of
SockMail is that it has only one user login. SockMail Pro will allow multiple user
accounts with varying levels of access. SockMail Pro will also have its own Java
web server to eliminate the need to have it running on the same computer as a
site's web server, and will allow people to use the product independently of a
web site. The SockMail Pro server will be able to run on a dedicated computer.
In addition to a 100% Java version of the server, Sockem Software plans to have
a Windows NT version compiled natively. This is being done with Supercede (a
Paul Allen company). This NT-only version will also be available with WinInstall,
so that the whole installation can be done through a GUI.

The Future of E-mail

SockMail is targeted towards a growing market. E-mail is undoubtedly the most
popular application on the Internet. As much as the graphical WWW, it has
fueled the astronomical growth of the Internet. E-mail is cutting down the
amount of time we spend on the telephone, and may eventually force the
handwritten letter to take its place in history next to the carrier pigeon and
telegram. Like any other form of communication, though, e-mail requires
courtesy and common sense. Nothing is as impersonal as a form letter, except
possibly a form e-mail. This lesson applies to SockMail. A potential risk is
involved when increasing the amount of e-mail we receive and send.
Communication loses its value when it doesn't understand its audience.

SockMail allows individuals to easily sign up for mailings they're interested in
and drop mailings they don't want. In this way, control over information is as
much in the hands of consumers as producers. Let's hope this relationship
stays in balance.

Noah Yasskin is a freelance writer living in Brooklyn, New York. He has a degree
in History and Social Sciences from Eugene Lang College and attended the
Philosophy program at the Graduate Faculty of Political and Social Science for a
short while. Instead of Aristotle and Max Weber, he now writes about New
Media companies and software programs. He can be reached at
nyjup@aol.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UNIX Power Tools

Samuel Ockman

Issue #53, September 1998

Using the shell interactively is becoming a bit of a black art.

• Authors: Jerry Peek, Tim O'Reilly and Mike Loukides
• Publisher: O'Reilly & Associates
• E-mail: info@oreilly.com
• URL: http://www.oreilly.com/
• Price: $59.95 US
• ISBN: 1-56592-260-3
• Reviewer: Samuel Ockman

The second edition of UNIX Power Tools is an impressive book by any measure.
Numbering a hefty 1073 pages, it covers shells, editors and tools such as AWK,
sed and RCS. The primary authors are Jerry Peek, Tim O'Reilly and Mike
Loukides, but the book is made up of hundreds of individual articles by many
different people, including UNIX luminaries Tom Christiansen and Simson
Garfinkel.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

UNIX Power Tools supplies many hints on how to save typing time by teaching
you how to better use your shell interactively, how to take advantage of your
editor and how to program scripts.

Using the shell interactively is becoming a bit of a black art. Luckily, UNIX Power
Tools covers everything you need to know about this subject. Here are a few
examples from the book to give you an idea of what it covers. First, here is how
to edit three existing files: afile, bfile and cfile:

emacs [a-c]file

Many people already know how to do this; however, it works only if the files
already exist. Lesser known is what to do if the files don't already exist. In this
case, you edit all three at once by using:

emacs {a,b,c}file

With this information, it's easy to figure out how to make backup files:
cp filename{,.bak}

This command will copy the filename to filename.bak. Here's how to use this
same idea to print six files or more:

lpr /usr3/hannah/training/{ed,vi,mail}/lab.{ms,out}

Are you confused by the find command? You won't have any problems after
reading Chapter 17, which has 24 pages devoted to find. File permissions and
processes are also covered in depth in their own chapters. Even wild cards get
their own chapter. Whole chapters are also devoted to printing, terminal and
serial line settings. (The book includes a great explanation of termcap and
terminfo.)

vi is given two large chapters, while Emacs is relegated to being “the other
editor” and given a scant ten pages. The vi coverage probably includes
everything you'll ever need to know about it, while the Emacs section basically
covers a few timesavers and the most essential commands, such as:

ESC-x psychoanalyze-pinhead

Missing from the book, though, is my favorite Emacs amusement:

ESC-9 ESC-x hanoi

The important thing to keep in mind is no matter what level of UNIX or Linux
expertise you have now, you can learn much more. Some of the hints are
beginner-oriented, but some may have even the most experienced user saying,
“Hey, I never knew that...”

Here's a question for you. How do you run a program, while routing the
standard error through a pipe to the mail program and leaving standard output
on your screen under a Bourne shell? The answer is simple:

(program 3>&1 1>&2 2>&3 3>&-) | mail ockman &

Although bash and tcsh get special mention (as well as the more generic
Bourne shell family and csh), the most powerful shell, zsh, is left out. Since so
much of the book is devoted to shells, this is bothersome. Anyone who is really
interested in having the most “power” will choose zsh. Still, since zsh is largely a
superset of the other shells, almost all of the tips are still helpful.

sed is covered fairly extensively, and awk is covered sufficiently. Besides, in my
opinion, all you need to know about sed and awk these days is that you use s2p

and a2p respectively to translate your code to Perl. Speaking of Perl, the book
has a few essays on why you should learn Perl, but offers no real help in doing
so. It does offer the good recommendation of buying other O'Reilly books on
the subject.

This book also does not cover networking or the X Window System, but that's
good, because it leaves space for more important things. Nor, unfortunately,
does it particularly make mention of Linux, although almost all information in
the book holds true for Linux.

The book includes a CD-ROM of programs. Many of these programs are
probably already installed on your Linux system, but you'll find quite a few
others that will be useful. All of the programs are discussed in the text of the
book. The CD includes source code and binaries for both Intel Linux and a
handful of UNIX platforms. It does not make it clear which license the various
programs fall under.

UNIX Power Tools is highly recommended. It's yet another amazing book from
O'Reilly. After digesting all one thousand pages, you will be a wizard on the
command line.

Samuel Ockman owns Penguin Computing (http://
www.penguincomputing.com/). He spends all his free time rattling on about
how great zsh is. His forthcoming book Super Advanced Programming in the
Linux Environment is in the very early planning stages. You can e-mail him at
ockman@penguincomputing.com.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Managing AFS: Andrew File System

Daniel Lazenby

Issue #53, September 1998

From this book, the reader may gain an appreciation of the technical issues,
skills and knowledge required to install, configure and manage an AFS
environment.

• Author: Richard Campbell
• Publisher: Prentice Hall
• URL: http://www.phptr.com/
• Price: $45 US
• ISBN: 0-13-802729-3
• Reviewer: Daniel Lazenby

Managing AFS: Andrew File System provides a practical UNIX system
administration view of the AFS file system. From this book, the reader may gain
an appreciation of the technical issues, skills and knowledge required to install,
configure and manage an AFS environment.

How This Book Can Help

Most vendor documentation focuses on how to install and configure the
product and spends little time explaining the “why,” “when,” “where” or “what”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

of the product. A third-party book is never meant to replace the vendor's
documentation. Still, a third-party book can often fill in many of the gaps in the
vendor's documentation. Managing AFS spends considerable time describing
“why one would want to use AFS”; “what benefits can be derived from using
AFS”; “where might one use AFS”; “what components comprise an AFS file
system and the relationship of those components” and “what must be done to
install, configure and manage an AFS Cell”. Advanced AFS administration and
how to debug an AFS installation are also addressed by Mr. Campbell.

The Book's Layout

Managing AFS is divided into 12 chapters and an appendix of AFS commands.
The first two chapters provide an architectural and technical overview of AFS.
Chapter 11 provides several AFS implementation case studies. A strategy and
some tips for making a business case to support the use of AFS are provided in
Chapter 12. The 50 or so AFS commands are briefly described in the Appendix.
The sections in between the first two and last two chapters discuss setting up
and managing an AFS Cell.

Chapters 3, 4 and 5 provide an introduction to AFS. These chapters cover
setting up an AFS server, performing AFS operations on volumes and files, and
setting up and administering an AFS client platform.

The focus of Chapters 6 and 7 shifts from system administration to AFS user
account administration and security. Chapter 6, “Managing Users”, describes
how to establish AFS user accounts using Transarc's implementation of
Kerberos. Administration of Transarc's Kerberos database is also discussed.
AFS user login, authentication, groups and directory/file access controls are
addressed in Chapter 7, “Using AFS”. Transarc includes their implementation of
some conventional UNIX user commands, programming commands and
programs with AFS. Examples of UNIX commands and programs that have been
modified by Transarc include chmod, df, close, lockf, ftpd, login and inetd.
Differences between the two implementations are described.

Chapter 8, “Archiving Data”, provides a momentary break from the other AFS
administration concepts and tasks. As stated earlier, AFS supports the global
distribution of files. With global distribution comes the challenge of file
restoration. In addition to the user's data, data describing the AFS
implementation and configuration must also be backed up. Challenges, tools
and strategies used to back up and restore an AFS file system are presented
here.

With the basics behind you, Chapter 9, “More AFS Administration”, explores the
finer details of AFS administration. Server management, updating AFS binaries,

job notification, changing the cell name, adding and removing database servers,
adding and removing file servers, multi-homed servers and NFS-AFS gateways
are just a few of the topics discussed.

Even a well-designed and implemented product will have problems. Chapter
10, “Debugging Problems”, offers a set of strategies for debugging an AFS
installation. An explanation about when and how to use the available
debugging tools is provided. This chapter also offers a set of typical AFS
administration tasks that should be regularly performed and tested.

Why Consider AFS?

The original Andrew File System was created by a group of researchers at
Carnegie Mellon University (CMU). They were striving to overcome the
challenges associated with providing centralized file services in a distributed
environment. Their AFS solution worked so well that many of the original
researchers left CMU and formed the Transarc Corporation. AFS is now a
registered trademark used by the Transarc Corporation to identify the
commercial packaging of the Andrew File System. The AFS model was used as
the basis for the Open Software Foundation's (OSF) Distributed File System
(DFS) specification. Transarc has ensured there is a migration path from AFS to
DFS.

A small shop with few workstations or shared files may have little need for AFS,
whereas a large shop with many workstations, servers and the need to globally
share files may have a greater need for it. In addition to being able to manage
AFS servers and clients from a single workstation, AFS reportedly provides
several other performance and financial benefits.

The book refers to “published” data on how AFS can support five to ten times
more end users per server than other file systems. This increased user-to-
server ratio translates into a need for fewer servers and fewer file storage
administrators. An AFS file system can be made highly available using two or
more AFS servers. This means that the loss of a server will not translate into a
user being denied access to the file system.

One set of tests cited for an organization using NFS file sharing found that
switching to AFS resulted in several performance improvements. For the same
NFS type of workload, AFS resulted in a 60% decrease in network traffic. The
server's load was decreased by 80%, and task execution time was reduced by
30%.

Linux AFS Port Availability

Transarc has ported AFS to most commercial UNIX platforms, as well as NT.
Massachusetts Institute of Technology (MIT) has made several non-Transarc
supported ports of AFS to various other architectures. The MIT ports used
source code owned by Transarc. (The source code is reported to be available
for a reasonable price.) Therefore, access to the MIT ports requires one to be
an AFS licensee or affiliated with an organization who is an AFS licensee. Linux
AFS is one of the several ports made by MIT.

Resources

Daniel Lazenby holds a BS in Decision Sciences. He first encountered UNIX in
1983 and discovered Linux in 1994. Today he provides engineering support for
a range of platforms running Linux, AIX and HP/UX. He can be reached at
dlazenby@ix.netcom.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/053/2913s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Discover Linux

Marjorie Richardson

Issue #53, September 1998

Not just another book for the total novice, Discover Linux is written for the
Linux newcomer who is an experienced UNIX user.

• Author: Steve Oualline
• Publisher: IDG Books Worldwide, Inc.
• URL: http://www.idgbooks.com/
• Price: $25 US
• ISBN: 0-7645-3105-0
• Reviewer: Marjorie Richardson

Discover Linux is a good book. Mr. Oualline has a breezy style that is easy to
read and understand. Indeed, the format of the book is designed for easy
readability. The print is large, the margins wide, and there is plenty of white
space to keep the eye moving to the next line.

Not just another book for the total novice, Discover Linux is written for the
Linux newcomer who is an experienced UNIX user. It covers a lot of territory
from the requisite installing Linux to setting up PPP to using Linux in the office.
Many of the applications discussed are introduced with one or two short
paragraphs, and a web address for obtaining more information. The word
processor LyX and ispell are two that are handled this way. Other applications,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

such as Applixware and xv, are given more space and have some options
explained. Plenty of screen shots, all in black and white, go along with the text.

On the subject of screen shots, about midway through the book is a chapter
(Part II, Chapter 8) on games in which every screen saver available with X is
shown in black and white. To me, this seemed a bit of a waste of space. Also, all
of the games are given just an introductory sentence or two and a screen shot.
There is nothing in-depth here and that's fine. It is certainly not the purpose of
this book to provide a tutorial on every application; rather, to give an overview
that allows the user to pick from the many options which appeal to her.

Sprinkled throughout the book are tips, cautions and short anecdotes about
various subjects; some are funny, some are not. All provide some information
and a nice break.

The first part of the book is called “Up and Running with Linux”. It covers
installation, getting started, getting help, configuration and backing up. The
information provided is complete for those who already have some idea of
what they are doing. The instructions for installing Linux are given in an easy-
to-follow list format that should be understandable even to rank newbies. Just
follow the steps—one, two, three—and you have a working Linux system. The
book comes with the requisite CD-ROM which contains Red Hat Linux 4.2, a
step behind, as usual with books, but certainly a very stable version for a
newcomer. At any rate, the instructions for installation are therefore geared
towards Red Hat users, as is true for all instructions throughout the book. Since
Red Hat is the only distribution on the CD-ROM, this makes sense.

The second part of the book, “Fun and Games”, covers connecting to the
Internet as well as the games mentioned previously. Again, Mr. Oualline
provides step-by-step instructions for connecting with PPP, including
discussions of chat scripts, minicom and pppd. He also tells you how to
download and set up Netscape Navigator.

Part III is called “Linux in the Office” and covers mail programs, the X Window
File Manager, Linux as a server and DOS. Mail programs, office applications and
databases are treated similarly to the games. A short introduction is given with
an example or screen shot and then a pointer is given to places on the Web for
more information. The author presents Applixware as a bonus, stating “Move
over Microsoft.” He ignores the fact that StarOffice now comes with Caldera,
stating only that the German documentation makes it hard for English-only
users. For Linux as a server, he does a good job of presenting SMB, NFS and
NIS, telling you how to set up and use them. AMD, RAID, IPX and Appletalk are
mentioned briefly.

Part IV, “Multimedia and Programming Tools”, follows the same pattern. Some
subjects are given more attention than others, but you find out something
about everything. An interesting chapter in this section is Chapter 14,
“Understanding the Initialization Process”, which explains the boot process,
including Run Levels and rc scripts.

Part V, “Advanced Configuration”, gives some details on configuring XFree86
and customizing your window manager. It also tells you what options are
available if you get into trouble and how to report bugs.

Besides the normal Appendices, there is a section (all on blue paper, so you can
find it easily) called “Discovery Center” which provides a quick reference for
accomplishing tasks and points to the page in the book where these tasks are
discussed more fully. I felt this section was a good addition, providing a quick
way for the user to find the particular task she is interested in at the moment.

All in all, Discover Linux is a good reference for those with UNIX experience who
are looking into this radical operating system called Linux.

Marjorie Richardson is Editor of Linux Journal and the e-zine Linux Gazette. She
had been a programmer in the oil industry for 20 years before coming to SSC.
She likes to quilt, read science fiction, watch action movies and musicals, go to
the opera and motorcycle with her husband, Riley. She can be reached via e-
mail at info@linuxjournal.com.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Updating Pages Automatically

Reuven M. Lerner

Issue #53, September 1998

Have a need to change a file on your web site on a daily or monthly basis? This
month Mr. Lerner tells us how to do it.

The home page of my web browser is set to http://www.dilbert.com/, home of
the famous and funny Dilbert comic strip. Thanks to the magic of the Internet,
I'm able to enjoy Dilbert's tragicomic humor each morning, just before I start
my workday.

The Dilbert web site would not be very useful or interesting were it not for the
creative talents of Scott Adams, Dilbert's creator. What makes it interesting
from a technical perspective is the way in which the comic is updated
automatically each day. Every morning, the latest comic is automatically placed
on the Dilbert home page, giving millions of fans the chance to see the latest
installment.

This month, we will examine several ways in which you can create pages that
are automatically updated, so that a user can discover new content at the same
URL each day. We will look at several different means to the same end, ranging
from CGI programs to cron jobs, and will even take a brief look at how to use
databases when publishing new content.

Pointing with CGI

For starters, let's assume our web site consists of seven different pages, one for
each day of the week (e.g., file-0.html on Sunday, through file-6.html on
Saturday). How can we configure the site so that people requesting today.html
(or today.pl) will be shown today's file? In other words, a visitor on Wednesday
should be shown file-3.html when requesting today.html. Such a system might
be appropriate for a school cafeteria, where the food tends to be the same
each day of the week.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Perhaps the simplest solution is a CGI program, which we will call today.pl. If we
write the program in Perl, we can easily determine the day of the week using
the localtime function, which returns a list of elements describing the current
date and time. Using the sixth element of that list, which indicates the current
day of the week, we can create the correct URL for that day. Finally, we can use
the HTTP “Location” header to redirect the user's browser to the correct
location.

A simple implementation of this program is shown in Listing 1. The program
should seem familiar to anyone who has written CGI programs. It enables all of
Perl's warning systems: -w for optional warnings, -T for extra security, strict for
extra compile-time checking and diagnostics for more complete documentation
if something fails.

By using CGI.pm, the standard Perl module for writing CGI programs, we gain
easy access to any input passed by the server, as well as the various output
methods a CGI program might use. Most CGI programs use the output
methods meant for returning HTML to a user's browser, including sending a
MIME “Content-type” header indicating the type of content about to be sent—in
our case, we return a “Location” header, which removes the need for a
“Content-type” header.

If the above program is installed as /cgi-bin/today.pl on our server, visitors will
always be greeted with the appropriate file for the current day of the week.

The above program, simple as it is, has several flaws. Most significantly, CGI is
slow and inefficient; using it to redirect the user's browser to another file will
slow down the user's experience, as well as increase the load on your server.
Each time a CGI program is invoked, the server must create a new process. If
the program is written in Perl, this means the Perl binary must be started,
which can take some time.

One solution might be to use mod_perl, which inserts a fully working version of
Perl into the Apache web server. Using mod_perl means Apache no longer
needs to create a new process, execute the Perl binary or compile the Perl
program, which will cut down on server resource use. However, this still means
that each time a user requests the home page, the server must execute a
program. If the page is requested 1,000 times in a given day, then the program
will run 1,000 times. This might not sound like much, but imagine what
happens when your site grows in popularity, getting 1,000,000 hits each day.

Even this solution doesn't address the fact that not all users run browsers
which handle redirection. If a browser does not handle the notice, the user will

https://secure2.linuxjournal.com/ljarchive/LJ/053/3060l1.html

be unable to see today's file. This problem is increasingly rare, but keep it in
mind if you want the maximum possible audience for your web site.

Automatically Copying Pages with cron

Let's now examine a strategy in which the program runs only once per day,
regardless of how many people ask to see today's page. This method reduces
the load on the server and allows people with old browsers to visit our site
without any trouble. The easiest strategy is to use Linux's cron utility, which
allows us to automatically run programs at any time. Using cron, we can run
our program once per day, copying the appropriate file to today.html. On
Sundays, file-0.html will be copied to today.html, while on Thursdays, file-4.html
will be copied to today.html.

Listing 2 is an example of such a program. If this program were run once a day,
then today.html would always contain the file for the appropriate day.
Moreover, the server would be able to respond to the document request
without having to create a new CGI process or use Perl.

The above program is not run through CGI, but rather through cron. In order to
run a program through cron, you must add an entry to your crontab, a specially
formatted text file that describes when a program should be run. Each user has
a separate crontab file; that is, each user can arrange for different cron jobs to
run at different dates and times.

You can edit the crontab file using the crontab program, which is typically in /
usr/bin/crontab. To modify your crontab file, use crontab -e, which brings up
the editor defined in the EDITOR environment variable. The format of crontab is
too involved for me to explain here; typing man 5 crontab on the Linux
command line will bring up the manual page describing the format. (Typing
only man crontab will bring up a description of the crontab program, rather
than the crontab file format, a distinction which can be confusing to new users.)

Assuming we want to run the above program (which I have called cron-today.pl)
at one minute after midnight, we could add the following entry to our crontab:

1 0 * * * /usr/local/bin/cron-today.pl

In other words, we want to run /usr/local/bin/cron-today.pl at one minute after
midnight (1 0), every day of the month (*), every month (*), and every day of the
week (*).

The output from each cron is e-mailed to the user who owns that job. After
installing the above line in my crontab, I receive e-mail from the cron job each

https://secure2.linuxjournal.com/ljarchive/LJ/053/3060l2.html

day at approximately 12:01 a.m. And each day, anyone visiting our site was
shown the correct file for today.html.

Using Symbolic Links

The above cron-based technique works, but has some annoying side effects.
For example, what happens if you decide to change the Tuesday menu on
Tuesday morning? The change will not be reflected until the following Tuesday,
because today.html contains the contents of file-2.html from 12:01 a.m., when
the snapshot was taken.

In order to solve this problem, as well as reduce the disk space used by two
copies of the program, we can use symbolic links. These look like files, but are
really pointers to files, similar to Macintosh “aliases” or Windows “shortcuts”. If
we create a symbolic link from today.html to file-0.html, the two file names will
be equivalent for most purposes. (Other “hard” links are also available under
Linux, but are more limited.)

If we want to create a symbolic link named today.html that points to file-0.html,
we say

ln -s file-0.html today.html

If you want to change the link so that it points to file-1.html, remove the old link
and create a new one, like this:

rm -fv today.html
ln -s file-1.html today.html

Alternatively, we can use the -f (“force”) option to ln, forcing the link assignment
even if it was previously linked elsewhere:

ln -sf file-0.html today.html

If we were to do this each day, removing the old link and creating a new one,
we would be doing effectively the same thing as in cron-today.pl, but with the
added advantage of equating the two files. In addition, we would be saving
space on the file system by pointing to the original file rather than copying it.

Listing 3 contains a short Perl program meant to be run via cron, which creates
such a link. Anything sent to standard output (STDOUT) via “print” statements is
sent to the owner of the cron job. This program assumes the owner of the cron
job (under whose user ID the program is run) has permission to remove the
existing file, as well as create a new symbolic link in the directory. It is possible
to create a symbolic link to any file, including a nonexistent file; only when you
try to access the file are the permissions checked.

https://secure2.linuxjournal.com/ljarchive/LJ/053/3060l3.html

Publishing Daily Items

The techniques we have examined so far are most useful when the same item
appears each week or perhaps each month. In many cases, though, publishing
on the Web involves creating a new file each day and making that available. For
starters, we will look into how to create a new file each day (of the form
file-1.html, as before), so that the newest file will be available by looking at
today.html.

Once again, we could accomplish this with either a CGI program or a cron job,
examples of which you can see in Listing 4 and Listing 5, respectively. Both
programs use the same basic algorithm to find the highest-numbered file of the
form file-n.html, where n is the sequential number for the file.

The key to both programs is in these lines:

if (opendir(DIR, $directory))
{
@files = sort by_number
 grep {/^file-[0-9]+\.html$/} readdir(DIR);
closedir DIR;
}

First, we open $directory, the directory in which the files exist. (If the program
cannot open the directory, it logs an error.) We then read the contents of the
directory DIR, using Perl's grep function to filter out any files not fitting the file-
n.html pattern. Finally, we sort those files with our own by_number routine,
which compares the sequential numbers rather than the full file name.

Once we have the list of files, we pick off the last element of @files, which has
the highest sequential number. We can then redirect the user's browser to that
file using CGI.pm's redirect method.

If we want to publish items each day, we should try a better system than this
one, which depends on sequential numbers. First of all, it is easier to handle file
names which mention the subject (e.g., menu.html) or the date (e.g.,
file-1998-06-01), rather than something named with sequential numbers, as in
file-3023.html.

Secondly, arranging articles by date provides users with a natural way of
navigating through archives in the future without having to depend on the site's
navigation scheme. In addition, creating file names according to date rather
than sequential numbers decreases the chances of error.

If you choose to use the date in the file name, as in file-1998-06-01, try to keep
the date elements in year-month-day order, so that sorting file names
alphanumerically will also sort them chronologically. Then, we can write a small

https://secure2.linuxjournal.com/ljarchive/LJ/053/3060l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3060l5.html

program to select the file for today based on the date and run it each day with
cron. An example is shown in Listing 6. The program logic is fairly
straightforward, taking the date information from our call to localtime and
piecing those elements together to create the file name.

However, problems may arise if the file for today does not exist. As I mentioned
earlier, symbolic links do not have to point to files; they may point to any valid
file name, even if no file by that name exists. However, if the symbolic link
points to a non-existent file, users will be greeted with a dreaded “404--File not
found” error upon loading today.html from our site. A more sophisticated
version of this program would check to see if a file corresponding to today's
date existed on the site. Such a program would then search backward (or
forward, if you prefer) chronologically to find the best match for the today.html
symbolic link. It could even send e-mail to the webmaster indicating that such a
problem existed.

Using Databases

One additional method for publishing material on the Internet regularly is using
databases. Rather than relying on file names keyed with particular dates, we
can create a table that establishes a correspondence between file names and
dates. We can then write a CGI program to retrieve the current file or a
program meant to be run via cron to create a symbolic link to the current file.

Another option is to store the files inside of the database. However, if we were
to do that, we would also have to make it possible for the site's editors and
designers to store, retrieve and edit the information inside the database. For
our purposes, we will assume the files exist on the server's file system, and we
are trying to point to them rather than store their contents in a different way.
These examples were tested under Red Hat 5.1, Perl 5.004_04, the database
interface (DBI) libraries for Perl, and MySQL, a mostly free relational database
system available from http://www.mysql.com/.

Before we can do anything else, we have to create a table to hold the
information. The table will be relatively simple, containing only file names and
dates. We will assume that each article can be published on only one date, but
that each date can contain multiple articles, which makes our table creation
command look like the following:

CREATE TABLE Articles
 (filename VARCHAR(100) NOT NULL PRIMARY KEY,
 date DATE NOT NULL);

In the above, we define filename as a 100-character text field, which must be
filled in (NOT NULL) and cannot be the same as any other file name (PRIMARY

KEY). If we try to insert the same file name on two different dates, the database

https://secure2.linuxjournal.com/ljarchive/LJ/053/3060l6.html

will stop us. By contrast, because we want to allow more than one file on a
given date, the date field (which has a type of DATE) is defined as NOT NULL,
meaning that we must indicate a date with each file name.

In order to add a file to our database, we can use the following SQL command:

INSERT INTO Articles (filename, date)
VALUES ("foobar.html", "1998-06-05");

If you are using MySQL, you must put quotation marks around the date, or the
default date of 0000-00-00 will be inserted.

In addition to the confirmation message (1 row affected) we receive upon
submitting the above query, we can check the contents of the table:

mysql> SELECT * FROM Articles;
+-------------+------------+
| filename | date |
+-------------+------------+
| foobar.html | 1998-06-05 |
+-------------+------------+
1 row in set (0.08 sec)

Entering information into a database using raw SQL is inefficient, prone to
errors and unhelpful for users who are unfamiliar or encomfortable with SQL.
Listing 7 contains an HTML form that can be used to enter new articles into the
database, using the program in Listing 8.

Finally, we will need a version of today.pl that retrieves the file for today. A CGI
version of the program is in Listing 9; rewriting it such that it uses cron should
be fairly straightforward. A more sophisticated version of the program would
even check to see if the named file exists, searching backward.

Publishing regular articles on the Web is far less complicated than publishing a
daily or weekly newspaper, but still involves a bit of planning and programming.
In addition, no matter what method you choose, you will still have to make
some trade-offs between performance and flexibility. Nevertheless, creating a
page that changes each day and provides access to the site's archives is not
especially difficult and can provide enough variety to draw people.

All listings referred to in this article are available by anonymous download in
the file ftp://ftp.linuxjournal.com/pub/lj/listings/issue53/3060.tgz.

https://secure2.linuxjournal.com/ljarchive/LJ/053/3060l7.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3060l8.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/3060l9.html

Reuven M. Lerner (reuven@netvision.net.il) s an Internet and Web consultant
living in Haifa, Israel, who has been using the Web since early 1993. In his spare
time, he cooks, reads and volunteers with educational projects in his
community.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:reuven@netvision.net.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #53, September 1998

Readers sound off.

BTS Issue 50

In the article on ESDI drives, the URL for the MCA page should be: http://
glycerine.cetmm.uni.edu/mca/. I love your magazine. Three articles in this issue
answered questions I had been having. Keep up the good work.

—Pete dstrader@zianet.com

Linux and Compaq ProLiant 2000 and SMART

I have read articles saying many wonderful things about Linux and I believe
most of them to be true. Unfortunately, the extent of hardware support that
some of these articles claim is not a reality—or at least does not seem to be
when it comes to Compaq equipment.

I have just spent the best part of a day searching the Internet by various means,
including various search engines, trying to find drivers to support the
embedded NCR 53C710-based SCSI controller in a Compaq ProLiant 2000 and
also drivers to support a Compaq SMART SCSI RAID array controller. Result:
nothing, except a lot of stress.

Please can someone help me (and the many others who I have encountered
looking for these drivers). Linux claims to support quite a bit of hardware—
please extend this support to include some key Compaq server items.

—Graeme Nelson graeme@cheerful.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Open Source vs. Free Software

I'm writing you after seeing one too many odes to the glories of the Open
Source movement. I have a serious problem with the whole Open Source
bandwagon due to the fact that Open Source is almost solely about making
free software palatable to business—a segment of society which has played a
largely non-existent role in the development of free software. Business has
done nothing to make the user and programmer community at large more
aware of the benefits of free software. I feel the primary benefits are individual
and social freedom.

The June article by Eric S. Raymond, “Open Source Summit”, is a good example
of the fundamental emptiness of the Open Source movement. The O'Reilly
conference report struck me as being more about how Larry Wall, et al., can
strike it rich than about how the lives of users and programmers can be
enhanced through free software. I have nothing against people being financially
compensated for their labor, but being financially compensated for one's labor
has always been a secondary or even irrelevant consideration in the free
software movement and rightfully so.

The most appalling notion implied in the rhetoric of the Open Source
movement is that we, those of us who use/write/support free software, have to
change our ways and adopt a more corporate mindset if we want free software
to be successful in the real world. This is manifestly ridiculous. If free software
hadn't already proven itself thoroughly in the real world, there wouldn't even
be an Open Source movement. In fact, I think that free software and the free
software movement have proven themselves to such an amazing degree that
the corporate world now wants to find a way to squeeze a buck out of us.
Again, there is nothing wrong with making a buck, but don't you dare do it at
the expense of my freedom.

Unfortunately, free software developers are not a major source of advertising
dollars for LJ, so it is not likely that LJ will be publishing alternate views to the
Open Source camp anytime soon. That apparently being the case, I would
suggest that if LJ readers are interested in an alternate view of the free software
movement, check out, for starters, Richard Stallman's article “Why Free
Software is better than Open Source” at http://www.gnu.org/philosophy/open-
source-or-free.html.

—Shawn Ewald shawn@wilshire.net

While I disagree with your stated beliefs, I'm always happy to publish alternate
views—I have done so in the past, do so now with your letter and will do so
again in the future. While it is true that LJ does not receive advertising dollars

from free software, we put free software items in the “New Products” column
and publish reviews and tutorials of free software.

Linux Journal strongly supports “freely available” software and the Open Source
movement. This is one reason we chose the Debian distribution to use in our
office.

By the way, I see no reason for you to have singled out Larry Wall as looking for
a way to “strike it rich”. Perl is free and Larry is most definitely not a money-
grubbing type of guy.

—Editor

PPPui

My thanks to the numerous people who've written in response to my article in
LJ #50, “PPPui: A Friendly GUI For PPP”. To anyone interested in more features
—especially anyone who relies on single-use passwords—please check http://
www.teleport.com/~nmeyers/PPPui/ for features added to PPPui since the
article was originally submitted.

—Nathan Meyers nmeyers@teleport.com

Sybase and Linux

I just wanted to mention that we have a couple of people in our lab who
provide Sybase connectivity (server running on Irix) in their Linux programs.
They told me that it is fairly easy to get it working using freely available C code
downloaded from the Web.

—Marjan Trutschlmtrutsch@cs.uml.edu

PPPui Alternative

In Issue #50's article, “PPPui: A Friendly GUI for PPP”, Mr. Meyers notes that PPP
does not have a good user interface: the only way you know if your connection
succeeded or failed is to check the process list. Mr. Meyers offers a solution.

There's actually a simpler way than his program: direct syslog to Console 9 as
described in an earlier issue of Linux Journal, and enable logging in chat using --
v. Then, just hit alt—f9 to view your syslog console, and you can watch the
progress of chat's attempt to connect. Failed connects show up as Alarm, exit
or hangups; a sluggish connection can be observed as pppd sends EchoReq's
out. Disconnects show as hangups. This live syslog is also invaluable when
debugging your chat script.

—Cynthia Higginbothamcyhiggin@pipeline.com

Caldera Review—Not!

So there I was, reading the review of Caldera OpenLinux (June 1998), and the
reviewer, Sid Wentworth, writes:

Caldera, by default, uses the Looking Glass Desktop.
Not being a desktop sort of guy, I am not particularly
excited about it, but, if you want a desktop, it seems
adequate.

Great! He's not a desktop sort of guy. Why is a “non-desktop” kind of guy
getting paid for reviewing anything other than AWK scripts?

It's hard to take seriously reviews that completely leave out subjective
comments about functionality a reviewer doesn't really have an interest in, or
more to the point, his audience does have an interest in. Don't care about it,
don't review it—simple! The rest of us, though, might have been interested in
the state of this product's constantly evolving user environment, but the heck
with us. You need better writers, which shouldn't be too difficult. At least the
Windows techies take apart the toys they review.

—Tim Parsonstsparsons@earthlink.net

There is a lot more to Caldera OpenLinux (or any Linux distribution) than the
desktop. Also, desktop choices are available with any Linux flavor. In the case of
Caldera OpenLinux, I found their proprietary desktop to be unexciting, but I
also found that to be unimportant over all.

I could have easily written a 50-page review of this product—so many
capabilities are there to discuss. For example, each language translator could
have been reviewed. Even if I just looked at GUI capabilities, a comprehensive
review of desktops would need to include comparisons with XFM and other free
file managers.

Don't get me wrong. If Looking Glass had been exciting, I would have talked
more about it. It wasn't and I don't think it matters. What did matter, as I said in
the article, was StarOffice which, by the way, is its own desktop.

—Sid info@linuxjournal.com

Summit Article

Fabulous! I wish I'd been there!

—Tim O'Reilly, O'Reilly & Associatestim@ora.com

Small Error

I believe that the “Best of Tech Support” column in the May 1998 LJ contains a
small error. Regarding the question of Linux's behaviour when a file system is
infected with an MS-DOS virus, Chad Robinson states that because Linux
spreads file system meta-data more evenly throughout the physical disc,
“random potshots” are more likely to cause corruption of the meta-data. This is
misleading, in that if the amounts of meta-data were the same, the probability
of a potshot hitting the part of an MS-DOS file system containing meta-data is
equal to that of it hitting more evenly distributed meta-data on an EXT2 file
system. “Concentration” does not affect the probability, only the amount of
meta-data.

—Sidney Cammeresicammeres@uiuc.edu

Concerning LTE Issue 50

Simon Maurice in the June 1998 LJ criticizes Red Hat v5.0 for perceived
shortcomings. Is he truly serious in saying that Red Hat's RPMS is a “Microsoft-
like effort”? I think the package management system is one of the features that
puts Red Hat distributions at or near the top of the pile. Where are all the bugs
he alleges? I've found a few wrinkles, but nothing I'd call a serious bug.

As to the alleged problems with the actual distribution, I have run both the v4.2
and the v5.0 distributions as “official/supported” releases. I haven't applied any
patches—yet my system is so stable it hasn't crashed since March 1998 when
RH5.0 was installed. (Which is more than I can say for my Windows NT4
system.)

However, I do agree that Red Hat should be more polite when it comes to
customer (e-mail) support. I asked several questions about the v4.2 distribution
and was curtly told the questions were outside the support structure and to try
the mailing lists. I wasn't happy with that answer, but it taught me to go to the
documented sources first.

For $50 or so, Red Hat's distribution is by many orders of magnitude easier to
use and install than the first distribution of Linux I bought back in 1993 (Trans
Ameritech, v0.90 kernel). Compared to commercial operating systems (e.g.,
SCO, Windows NT), there is no comparison, whether for value for money,
stability or user support. Where else but in the Linux community can you get
bug fixes (if they are needed) so quickly?

—Alan Nutleyanutley@halenet.com.au

BTS Comment

I just received the June 1998 LJ (love> that airmail delivery folks). In “Best of
Technical Support”, Chad Robinson and Pierre Ficheux both gave useful
answers to “how do I back up NT and Linux”. However, you should know that
the AMANDA package (Advanced Maryland Automated Network Disk Archiver,
http://www.amanda.org/) works well with NT as well as with just about any
flavour of UNIX. The current release version is 2.4.0 (with 2.4.1 in snapshot
development form), and people all over the world are using it to back up all
sorts of machines.

—James C. McPhersonjcm@kalessin.humbug.org.au

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

How Many Distributions?

Marjorie Richardson

Issue #53, September 1998

I can't help but feel that the community would be better served if these
enthusiasts picked their favorite distribution and contributed toward making it
the ultimate distribution.

I have been seeing what I consider to be a disturbing trend in the Linux
community. A computer wizard discovers Linux, decides it's cool, but doesn't
think any of the current distributions are adequate. So, he gets together with a
few of his friends and begins working on “yet another” Linux distribution. Don't
get me wrong, these guys are great! They are investing a lot of time and effort
in attempting to put together the “boss” distribution.

Somehow though, I can't help but feel that the community would be better
served if these enthusiasts picked their favorite distribution and contributed
toward making it the ultimate distribution. The more distributions are available,
the more difficult it becomes for newcomers to make a choice and experts to
keep up with them all. Even worse, as distributions become more and more
divergent, Linux applications will not work on all of them. Thus, they are
competitors with each other rather than united in competition with Microsoft
and Apple.

In calling for a Linux Standard Base System Project, Bruce Perens said:

Binary compatibility between Linux distributions has
become a casualty of the competition between them.
There are vast differences in versions of libraries, etc.,
that make it difficult for a commercial application to
target more than one Linux distribution. This
fragmentation is one of the main reasons that UNIX
was crippled in the computer market.

Bruce is right: there needs to be a base standard. Then, using that standard,
programmers should contribute to their favorite distribution rather than

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

creating a new one. Let's be sure that Linux doesn't follow the same path as
UNIX.

In a similar vein, if the newcomer is not a programmer, he often chooses to
create another resources web page rather than a distribution. Every week I
hear of a new Linux page. Again, these pages have excellent material, but a lot
of them duplicate each other. When another newbie looks for Linux
information, he finds not just a few Linux pages, but many. Sorting through
them all is time consuming and confusing. I think a better method for the new
enthusiast would be to pick a page that's been around a while and appeals to
him personally, then offer to contribute to it. Most webmasters for these pages
are glad to receive current information.

SSC has always been willing to provide space for new sections and add
information provided by others in order to ensure that our Linux Resources
page is as comprehensive and attractive as possible. This attitude is not unique
to us—slashdot.org and Linux Weekly News are other sites willing to accept
contributions from the community.

I'm not saying we should have only one Linux distribution; we just don't need
one for every new person who discovers Linux. The message here is, don't
reinvent the wheel—pick your favorite distribution or resources page and help
make it better.

Next Month

In our October issue, we have a great article about how Cisco Systems is using
Linux print servers worldwide. The author, Damian Ivereigh, discusses technical
issues involved with the print system and provides the method and code for
solving common problems. If you work for a large corporation (or even a small
one) with chaotic print services, this article is a must read.

As usual, I had more articles for our graphics focus issue than would fit in this
magazine. So, in our next issue we will continue this focus with an article about
a set of audio tools for Linux called Sculptor. These tools can be used for
manipulating audio spectra and providing continuous audio output.

Outsourcing Subscriptions

Once again, Linux Journal has outsourced its subscription services; this time to
a fulfillment house in Missouri City, Texas. We truly believe that in the long
term, this solution will provide the best service to our subscribers.
Unfortunately, this house was not prepared for the massive amount of e-mail LJ
receives, and so is off to a shaky start. I apologize to those of you who got
caught in this transition and did not receive timely answers to your mail. I

expect that by the time you read this, all problems will have been solved, and
services will be running smoothly.

Do your part to help cut down on the amount of e-mail subscription services
receives. Before writing complaint e-mail, check our web site for your
subscription status and finger info@linuxjournal.com for the actual mailing
date of the current issue.

Upcoming Events

• 6th USENIX Tcl/Tk Conference, September 14-18, 1998, San Diego, CA,
http://www.usenix.org/events/tcl98/

• ISPCON Fall '98, September 28-October 1, 1998, San Jose, CA, http://
www.ispcon.com/

• DECUS '98, October 3-8, 1998, Los Angeles, CA, http://www.decus.org/
• Atlanta Linux Showcase, Second Annual, October 23-24, 1998, Atlanta, GA,

http://www.ale.org/showcase/

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

USENIX 1998

Aaron Mauck

Issue #53, September 1998

SSC's system administrator travels to New Orleans and actually returns to tell
us about it.

Each year, the USENIX organization (http://www.usenix.org/) puts on a technical
conference dealing with UNIX and other UNIX-like systems. This year they had
an emphasis on free or Open Source operating systems, primarily Linux and
*BSD. The conference was held in New Orleans, Louisiana from June 15th to
the 20th.

Tutorials

Many day-long tutorials were offered on Monday and Tuesday including “Inside
the Linux Kernel” by Stephen Tweedie, one of the EXT2 developers, and several
talks on Networking and Security. I attended “Hot Topics in System
Administration”, given by Treni Hein and Evi Nemeth. They covered many topics
including Samba, Packet Filtering and IPv6.

Linux Journal Booth

Vendor Expo

I found it refreshing to see a vendor exposition (albeit a small one) comprised
completely of UNIX-friendly companies. O'Reilly was there, displaying all of their
titles for sale at 20% off. Needless to say, this made it one of the most popular
booths. Most of the faces were familiar: Red Hat, Linux International, InfoMagic,
the three heads of BSD and others. Among the unexpected participants was
the FBI, just a short distance from the Free Software Foundation. The whole
atmosphere of the exposition was quite relaxed, without the hectic feel of
COMDEX and other large industry trade shows.

The LI booth staff are happy to see us.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f3.jpg

BOFs and Speeches

Each evening offered several talks by different people on a wide range of
subjects. I caught “The State of Linux” talk by Linus Torvalds on Thursday
afternoon. He set Aug/Sep 98 as a hopeful release date for the 2.2 kernel.
Another event that took place every evening was the “Birds of a Feather” (BOF)
meetings, which were designed as a place for people with common interests to
come together and discuss their ideas and goals. It was also a great place to
rub shoulders with some of the “big names” in the UNIX community, such as
Keith Bolstic, Eric Allman and Jon “maddog” Hall.

Terminal Room

What UNIX conference would be complete without a terminal room? Luckily,
Earthlink and openBSD donated machines and bandwidth and created a room
with thirty or so machines running openBSD, connected to a T1.

The terminal room at full-tilt boogie.

Summary

If I were to do it all over again (and I most definitely want to), I would spend
more time planning what I want to learn. I was a bit overwhelmed by the sheer
number of talks/events, and therefore found it difficult to focus on exactly what
I wanted to get from the experience—I was constantly spreading myself too
thin. For any UNIX, Linux, BSD etc. lover, USENIX is a must at least once in a
lifetime. It is a very friendly and co-operative environment and has definitely
earned its reputation as one of the hubs of the computing community.

Jon “maddog” Hall and admirers

Aaron Mauck is the System Administrator for SSC. He can be reached via e-mail
at info@linuxjournal.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3061f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Little Devil Called tr

Hans de Vreught

Issue #53, September 1998

Here's a useful command for translating or deleting characters in a file.

The program called tr is not a big program; it is quite small and not extremely
powerful. However, if you write scripts, you will treasure it as one of your
favorites. It is a typical script program, reading from stdin and writing to stdout;
there are no file names to provide as arguments. The main function is
translating characters. A second important function is deleting characters.
Furthermore, tr is capable of squeezing repeated characters into one, but that
particular function is rarely used.

Let us begin with translating characters. The tr command takes the form:

tr

While tr reads its input, it replaces characters appearing in string1 by the
corresponding characters in string2. So, the command tr abc def will replace a
line like “the quick brown fox quickly jumped over the lazy dog” into “the quifk
erown fox quifkly jumped over the ldzy dog”. Well, that doesn't make sense, but
it does demonstrate how tr works.

Have you ever wanted to capitalize or de-capitalize a file? To capitalize it, you
can use:

tr abcdefghijklmnopqrstuvwxyz \
 ABCDEFGHIJKLMNOPQRSTUVWXYZ

Luckily, we can also use ranges of characters to specify the characters more
efficiently:

tr a-z A-Z

Ever had those horrible upper case DOS file names? Here's a Bourne script to
take care of them:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

for f in *; do
 mv $f `echo $f | tr A-Z a-z`
 done

Many UNIX editors allow some text to be processed by the shell. For example,
to replace all upper case characters of the next paragraph with lower case
while in vi, type:

!}tr A-Z a-z

As another example, the command:
!jtr a-z A-Z

capitalizes the current and next line (the character after the ! is a movement
character).

If you read the International Obfuscated C Code Contest (ftp://ftp.uu.net./pub/
ioccc/), you frequently see that part of the hints are coded by a method called
rot13. rot13 is a Caesar cypher, i.e., a cypher in which all letters are shifted
some number of places. For example, a becomes b, b becomes c, ..., y becomes
z, and z becomes a. In rot13 each letter is shifted 13 places. It is a weak cypher,
and to decipher it, you can use rot13 again. You can also use tr to read the text
in this way:

tr a-zA-Z n-za-mN-ZA-M

Another interesting way to use tr is to change files from Macintosh format to
UNIX format. For returns, the Macintosh uses \r while UNIX uses \n. GNU tr
allows you to use the C special characters, so type:

tr \r \n

If you don't have GNU's version of tr, you can always use the corresponding
octal numbers as shown here:

tr \015 \012

You might wonder what would happen if the second string is shorter than the
first string. POSIX says this is not allowed. System V says that only that portion
of the first string is used that has a matching character in the second string.
BSD and GNU pad the second string with its final character in order to match
the length of the first string.

The reason this last method is handy becomes clearer when we take
complements into account. Assume you wish to make a list of all words and
keywords in your listing. When you use -c, tr complements the first string. In C,
all identifiers and keywords consist of a-zA-Z0-9_, so those are the characters
we want to keep. Thus, we can do the following:

tr -c a-zA-Z0-9_ \n

If we pipe the tr output through sort -u, we get our desired list. If we follow
POSIX, the second string would have to describe 193 newline characters
(described as \n*193 or \n*). If we use system V, only the zero byte is translated
to a newline, since the complement of a-zA-Z0-9_ starts with the zero byte.

The second important use of tr is to remove characters. For this option, you use
the flag -d with one string as an argument. To fix up those nasty MS-DOS text
files with a ^M at the end of the line and a trailing ^Z, specify tr in this way:

tr -d \015\032

Many people have written a program in C to do this same operation. Well, a C
program isn't necessary—you only need to know the right program, tr, with the
right flags. The -d flag isn't used often, but is nice to have when needed. You
can combine it with the -c flag to delete everything except characters from the
string you supplied as an argument.

Repeated characters can be squeezed into a single one using the -s option with
one string as an argument. It can also be used to squeeze white space. To
remove empty lines, type:

tr -s \n

The -s option can be used with two strings as arguments. In that case, tr first
translates the text as if -s were not given and then tries to squeeze the
characters in the second string. For instance, we can squeeze all standard white
space to a single space by specifying:

tr -s \n [*]

The -d flag can also be used with two strings: the characters in the first string
will be removed and the characters in the second string will be squeezed.

tr may not be a great program; however, it gets the job done. It is particularly
useful in scripts using pipes and command substitutions (i.e., inside the back
quotes). If you use tr often, you'll learn to appreciate its capabilities. Small is
beautiful.

Hans de Vreught (J.P.M.deVreught@cs.tudelft.nl) is a computer science
researcher at Delft University of Technology. He has been using UNIX since
1982 (Linux since 0.99.13). He likes non-virtual Belgian beer, and he is a real
globetrotter, having already traveled twice around the world.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Training on a Token Ring Network

Charles Kitsuki

Issue #53, September 1998

Linux can provide technical managers with cost-effective, reliable training tools

Money is not always available to do training in a business environment. Overall,
businesses are looking for cost-effective solutions. Finding training tools that
are both cost effective and reliable is not easy. This is especially true in a
technical environment. To teach UNIX and web-based technology, Linux can
provide technical managers with solutions to this dilemma. This article
describes how to set up a Linux system for training on a token-ring network.

Convincing others of the benefit of using Linux as a training tool was not a
problem in my particular scenario; this may not be the case in other
environments—it depends on the audience. My situation involved introducing
the product to a liberal management staff. Their main concerns were
maintenance and material costs; they wanted a system that would not add
substantial cost or bring additional work to other groups. Linux fulfills both
criteria.

Completed projects provided the equipment. The candidate for the Linux
system was a Compaq Pentium 166MHz machine with 64MB of RAM. It has a
1.2GB drive and a 4x ATAPI Sony CD-ROM. As a training system, multiple users
needed access to this machine, so a LAN connection was required.

The network setup at my office is token ring. Network cables and a spare IBM
token ring PCI card provided the connections. The system was placed in the
computer center located on the first floor of the building. It resides behind
some AIX mini-computers that cost over a quarter of a million dollars. The
entire cost to the company for the Linux system's hardware was nil, since it
came from another project. If the equipment had not been available, the total
estimated hardware costs would have been, at most, $1500.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

After the hardware installation, the system was ready for software installation.
The Slackware version of Linux 2.0, from a CD-ROM, became the operating
system of choice, because it provides many of the UNIX features the staff
already uses in its core systems. The first step of software installation involved
creating boot and root diskettes. Slackware provides several different
installation options, depending on the hardware. The bare.i and color.gz files
on the Slackware installation CD-ROM are the optimal choice for our setup.
Once these files were copied to a hard drive on another computer, the rawrite

command included on the CD-ROM was used to create the boot and root
diskettes.

The boot diskette initiated the target system, which began loading a subset of
the Linux operating system into memory. Next, the root diskette was loaded.
This was enough to start the installation of the system.

The next step involved creating a native Linux partition on the hard drive, then
loading the operating system. Slackware provides an easy way to do this with
its setup process. This process is menu driven, and it allows you to install a
mixture of utilities. The setup in this environment included the basic Linux
system and X utilities.

After installing the software, configuring the system's startup was next. The
startup routine was set to load the kernel from the hard drive. At that time, no
network configuration took place, because Slackware requires you to recompile
the kernel if you have a token-ring card.

At this point, the initial system was tested by running some of the non-network
commands. After checking the system, the kernel was rebuilt for a token-ring
network. Rebuilding the kernel so it would recognize an IBM token-ring card
with a Tropic chip set was rather painless. This does require superuser access
rights, however.

First, from the /usr/src/Linux directory, the make config command was run,
starting a shell script that prompts the end user with questions to configure the
operating system. The prompts usually default to the system's last kernel
configuration. Below is the kernel modification for the token-ring card:

<<Token Ring driver support (CONFIG_TR)[N/y/?]-Y
 IBM Tropic chip set based adapter support
 (CONFIG_IBMTR)[N/y/m/?]-Y>>

No other commands need to be changed. Following the kernel configuration,
the next four make commands must run for the system to recognize the
changes:

make dep: make clean; make zImage; lilo

Briefly, these commands will create the necessary dependencies, remove
object files, create the kernel image and allow the Linux loader to recognize the
kernel. Creating the kernel image takes the most time. Depending on the
machine, it could take as long as a couple of hours.

After the kernel was rebuilt, the file /etc/rc.d/rc.inet1 needed to be changed.
This file loads all of the network addresses for the system. The Ethernet
network setup was modified to a token ring by changing eth0 in the ifconfig

command to tr0:

/sbin/ifconfig eth0 ${IPADDR} broadcast\
${BROADCAST} netmask ${NETMASK}

The rc.inet file was set with the appropriate IP addresses. The host file, /etc/
hosts, was modified to provide an alias to some common systems. The entire
system was tested using the ping command and by running a few TELNET
sessions.

Although the system includes many of the X utilities, it was not set up to run the
X Window System. These utilities are accessible from Windows NT workstations
with X emulators, such as PCXware. Most users at the site run these utilities,
since they are accessing this system using TELNET and browser sessions from
their workstations running Windows NT 4.0.

The next step involved configuring an Apache web server for our Linux
machine. We obtained the server from CD-ROM in a compressed format. The
uncompress command was used to unpack the files in a directory called /usr/
local/httpd. In our setup, end users needed to create and view their home
pages. For example, I needed to be able to access my home page, called
index.html, from my directory at /home/kitsukic/www/. This required a
modification to the srm.conf file, which locates home pages and sets special
parameters that affect servicing of end users. This file is located in the /var/lib/
httpd/conf directory. In this scenario, change the value of UserDir from local_dir

to www. Hence, to get to my home page, my call would be http://
145.225.56.23:82/~kitsukic/. The server now allows a browser to access my
home page in /home/kitsukic/www/.

In addition, the port number in the main server configuration file, /var/lib/
httpd/conf/httpd.conf, needs to be changed from 80 to 82. The reason it needs
to be changed is that another process uses port 80. Once the changes to the
configuration files were done, the following command was activated in the /etc/
rc.d/rc_httpd file:

/usr/sbin/httpd -f

This starts the Apache httpd server whenever the system is booted. Overall, the
entire installation of the server was straightforward and did not require much
effort. A mock user's web pages served to test the web server.

The final step of the installation involved creating processes that would make
the system maintenance-free. The cron command provides the Linux user with
this capability. The cron command runs backup and file-cleanup processes at
specific times of the day. For the backup process, it runs a script that
compresses and transfers essential files to another machine. Another process
run by the cron command purges old log and trash files periodically. The two
processes are somewhat maintenance-free. In order to create these scheduled
jobs, the administrator must run the crontab -e routine from the root login,
which provides a vi editor environment. Using this editor, the administrator can
create a list of jobs for the cron command to run at specific times. For example,
he or she could create an entry to tell users to log off the system every day at
6:00 PM in order to do backups at this time.

For training purposes, the system was loaded with C++ and Perl. Programmers
can safely run C++ and Perl code without affecting the larger systems. The
Linux system also hosts a group home page that links to the staff's web sites.
There are also links to tutorials on how to create web pages. The main page
also links to an experimental SQL database. It demonstrates to the user how to
use HTML commands to connect and extract data from an SQL database.

Currently, the Linux system is open to anyone within the department who
wishes to experiment with creating web-based products using C++, Perl and a
UNIX operating system. Programmers have been creating web pages using
HTML and Java. Several non-programmer analysts have used this system to
start learning how to program in C++ and HTML. As of this date, there have
been no system crashes. The system has been reliable and maintenance-free
from the start.

As businesses look toward cutting costs, Information Systems managers in
UNIX environments need to find creative solutions to train their staff. One
alternative is using Linux. Although the stigma of being a hacker's non-
supported operating system remains, Linux is surprisingly easy to install and
maintain. It offers a rather inexpensive system, with many of the UNIX features
common in bigger ones. This makes it attractive to managers trying to cut
training costs while at the same time trying to keep their staff technically
trained.

Charles Kitsuki is an Information Systems Development Manager for a
telecommunication carrier. He leads a group of Programmer Analysts, Project
Leaders, Business Analysts, Quality Assurance Trainer/Analysts and Supervisors

through the murky waters of maintaining and enhancing several software
systems. When Charles is not busy trying to overcome the myriad of
paperwork, he is writing programs and hacking on his operating systems. He
can be reached via e-mail at kitsukic@pixi.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Amy Kukuk

Issue #53, September 1998

Conix 3D Explorer, NetWinder, CommuniGate Pro Server 2.0 Beta and more.

Conix 3D Explorer

Conix Enterprises, Inc. has announced the release of Conix 3D Explorer for
Linux ELF. While supporting standard Mathematica graphics, 3D Explorer also
provides a new graphics type, GLGraphics, with extended graphics primitives
and directives. New features include continuous surfaces, display lists, inline
transformations and per-element control over graphics options. Standard
Mathematica graphics can be converted to GLGraphics and enhanced, allowing
you to build directly on your existing graphics skills. 3D Explorer comes with a
run-time installation of OpenGL for Linux by Conix. 3D Explorer is currently
available for Linux ELF, Windows 95/NT and PowerMac platforms.

Contact: Conix Enterprises, Inc., PO Box 4113, San Luis Obispo, CA 93403,
Phone: 800-577-5505, E-mail: tech@conix3d.com, URL: http://conix3d.com/.

NetWinder

Corel Computer has announced the release of NetWinder, a network computer
built upon the Linux operating system. There are three versions of NetWinder
including The Netwinder WS (a scalable, out-of-the-box, web-server solution
designed to enable small and medium-sized businesses to create a web
presence), The Netwinder LC (especially designed for desktop use) and The

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

NetWinder DM (a development machine equipped with a 3GB hard drive and
packed with Corel's development tools). More information about the
NetWinder and Corel Computer is available at the company's web site.

Contact: Corel Computer, 150 Isabella Street, Suite 1000, Ottawa, OntarioK1S
1V7, Canada, Phone: 613-788-6000, Fax: 613-230-8300, E-mail: via web site,
URL: http://www.corelcomputer.com/.

CommuniGate Pro Server 2.0 Beta

Stalker Software has announced the CommuniGate Pro Server 2.0 Beta, a
platform-independent Internet messaging server. Key features include multi-
platform, industry-strength administration via the Web, multi-domain support,
anti-spam protection and unique IMAP multi-mailbox features. The
CommuniGate Pro server can be configured, controlled and monitored from
any computer connected to the Internet using any web browser application. On
all platforms, the CommuniGate Pro presents the same interface and uses the
same file formats, allowing any organization to switch server platforms in less
than an hour. A CommuniGate Pro Server can be downloaded free of charge at
http://www.stalker.com/CommuniGatePro/.

Contact: Stalker Software, 655 Redwood Highway, Suite 275, Mill Valley, CA
94941, Phone: 800-262-4722, E-mail: info@stalker.com, URL: http://
www.stalker.com/.

J Street Mailer Release Two

InnoVal Systems Solutions has announced the release of a new production
version of J Street Mailer Release Two, a full-function e-mail client written
entirely in Java. J Street Mailer supports both POP3 and IMAP4 mail servers.
One of the most useful new features is LDAP (Lightweight Directory Access
Protocol). Other features include Preview Mail for examining mail on a POP3 or
IMAP4 server, mulitple personas of signatures and prefaces within a single
account for business and personal use, and virtual folders. The J Street Mailer is
currently available for $49 US. Java Lobby members may obtain a license for
$44 US. Students and faculty of accredited higher education and secondary
schools may obtain J Street Mailer for $29 US.

Contact: InnoVal Systems Solutions, Inc., 600 Mamaroneck Avenue, Harrison,
NY 10528, Phone: 914-835-3838, Fax: 914-835-3857, E-mail: innoval@ibm.net,
URL: http://www.innoval.com/.

InterBase 4.0 for Red Hat Linux 4.2

InterBase Software Corporation has announced the release of InterBase 4.0 for
Red Hat Linux 4.2. InterBase 4.0 for Linux is compatible with the commercial
versions of InterBase on other platforms. InterBase includes InterClient, an all-
Java JDBC driver, versioning architecture where readers and writers don't block
each other, an active database that includes a full-featured trigger
implementation, event alerters, tailored VAR program and UNICODE
International Characters support. InterBase 4.0 for Red Hat 4.2 is freely
downloadable from the InterBase web site.

Contact: InterBase Software Corporation, 100 Enterprise Way, Suite B2, Scotts
Valley, CA 95066, Phone: 408-431-6500, Fax: 408-431-6510, E-mail: via on-line
form, URL: http://interbase.com/.

Metro-X 4.3

Metro Link has released Metro-X 4.3, an X11 Release 6.3 server replacement
with more speed, more features and a new low price of $39 US. Metro-X
provides support for the fastest, most popular graphics cards on the market
today. In addition, Metro-X includes touch screen support and multi-screen
support at no extra charge. Metro-X uses a graphical configuration program for
easy setup and a graphical adjustment tool for image placement on the
monitor. Other features include hot-key exit, hot-key resolution switching,
hardware panning and international keyboard support. Metro-X 4.3 can be
ordered directly from Metro Link.

Contact: Metro Link Inc., 4711 Powerline Rd., Ft. Lauderdale, FL 33309, Phone:
954-938-0283, Fax: 954-938-1982, E-mail: sales@metrolink.com, URL: http://
www.metrolink.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Driving One's Own Audio Device

Alessandro Rubini

Issue #53, September 1998

In this article Alessandro will show the design and implementation of a custom
audio device, paying particular attention to the software driver. The driver, as
usual, is developed as a kernel module. Even though Linux 2.2 will be out by the
time you read this, the software described here works only with Linux 2.0 and
the first few decades of 2.1 versions.

I'm a strange guy, and I want my computers to keep silent—that's why I wrote
the “Visible-bell mini-howto”, where I suggest speakerectomy surgery be
performed. On the other hand, I enjoy playing with the soldering iron to build
irrelevant stuff. One of the most irrelevant things I ever conceived is recycling
the computer's loudspeaker in a very-low-volume audio device. As you might
imagine, the device plugs in the parallel port.

This article describes the driver for such a beast, shows interesting details of
the kernel workings and is still short enough to be an easy text for almost any
reader. A quick description of the hardware is mandatory, but you can safely
skip over the first section and jump directly to the section called “Writing Data”.

The software described here, as well as the electrical drawing, is released
according to the GPL and is available as sad-1.0.tar.gz (Standalone Audio
Device) from ftp://ftp.systemy.it/pub/develop/, my own ftp site.

Part of this work has been sponsored by “SAD Trasporto Locale” (http://
www.sad.it/), the bus company of Bolzano (Bozen), Italy. They plan to bring my
hardware on their buses and renamed the company to match my package
(smile). (See “Travelling Linux” by Maurizio Cachia, LJ, June 1997.)

Figure 1. Audio Device Schematic

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/053/2997f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2997f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/2997f1.jpg

The Underlying Hardware

My device plugs in the parallel port, and its schematics are depicted in Figure 1;
The photograph under the tiele is the only model ever built (Italian buses will
run a different flavour of such stuff, the “bus for bus”--ftp://ftp.systemy.it/pub/
develop/b4b-X.YY.tar.gz).

I owe the basic idea to Michael Beck, author of the pcsndrv package; the idea
sounds like “use the parallel data bits to output audio samples.” My own
addition is “use the interrupt signal to strobe samples at the right pace.” Audio
samples must flow at 8KHz and any not-so-ancient computer can sustain such
an interrupt rate: my almost-ancient development box runs a 33 BogoMips
processor and is perfectly happy playing parallel audio. The interrupt-based
approach trades higher quality for increased hardware complexity than that
needed by Michael's package.

As shown in the schematics, the device is made up of a simple D/A converter
built with a few resistors; the signal is then reduced to 1.5V peak-to-peak
amplitude and fed through a low-pass filter. The filter I chose is a switched-
capacitor device driven by a square wave at ten times the cutoff frequency. The
6142 chip is a dual op-amp with rail-to-rail output, one of several possible
choices for low-power single-supply equipment.

The output signal can be brought to a small loudspeaker, but can be listened to
only in complete silence; other environments ask for some form of
amplification. My preferred alternative to the amplifier is the oscilloscope, the
typical hear-by-seeing approach.

Writing Data

The main role of an audio driver is pushing data through the audio device.
Several kinds of audio devices exist, and the sad driver only implements the /
dev/audio flavour: 8-bit samples flowing at a rate of 8KHz. Each data byte that
gets written to /dev/audio should be fed to an 8-bit A/D converter; every 125
microseconds, a new data sample must replace the current one.

Timing issues should be managed by the driver, without intervention from the
program writing out the audio data. The output buffer is the software tool that
isolates timing issues from user programs.

In sad, the output buffer is allocated at load time using get_free_pages. This
function allocates consecutive pages, a power of two of them; the order
argument of the function specifies how many pages are requested and is used
as a power of two. An order of 1, therefore, represents two pages and an order
of 3 represents eight pages. The allocation order of the output buffer is stored

in the macro OBUFFER_ORDER, which is 0 in the distributed source file. This
accounts for one page, which on the x86 processor corresponds to 4KB, or half
a second worth of data.

The output buffer of sad is a circular buffer; the pointers ohead and otail

represent its starting and ending points. The kernel uses unsigned long values
to represent physical addresses, and the same convention is used in sad:

static unsigned long obuffer = 0;
static unsigned long volatile ohead, otail;

Note that the ohead and otail variables are declared as volatile to prevent the
compiler from caching their value in processor registers. This is an important
caution, as the variables will be modified at interrupt time, asynchronously with
respect to the rest of the code.

We'll see later that sad has an input buffer as well; the overall buffer allocation
consists of these lines, executed from within init_module:

obuffer = __get_free_pages(GFP_KERNEL,
 OBUFFER_ORDER, 0 /* no dma */);
ohead = otail = obuffer;
ibuffer = __get_free_pages(GFP_KERNEL,
 IBUFFER_ORDER, 0 /* no dma */);
ihead = itail = ibuffer;
if (!ibuffer || !obuffer) { /* allocation failed
 */
cleanup_module(); /* use your own function */
return -ENOMEM;
}

Any data that a process writes to the device is put in the circular buffer, as long
as it fits. When the buffer is full, the writing process is put to sleep, waiting for
some space to be freed.

Since the data samples flow out smoothly, the process will eventually be
awakened to complete its write system call. Anyway, a good driver is prepared
to deal with users hitting the ctrl-C and must deal with SIGINT and other
signals.

The following lines are needed to put to sleep and awaken the current process,
all the magic is hidden in interruptible_sleep_on:

while (OBUFFER_FREE < OBUFFER_THRESHOLD) {
 interruptible_sleep_on(&outq);
 if (current->signal & ~current->blocked)
 /* tell the fs layer to handle it */
 /* a signal arrived */
 return -ERESTARTSYS;
/* else, loop */
}
/* the following code writes to
 * the circular buffer */

What are OBUFFER_FREE and OBUFFER_THRESHOLD? They are two macros: the
former accesses ohead and otail to find out how much free space is in the
buffer; the latter is a simple constant, predefined to 1024, a pseudo-random
number. The role of such a threshold is to preserve system resources by
avoiding too frequent asleep->awake transitions.

If the threshold was 1, the process would need to be awakened as soon as one
byte of the buffer was freed, but it would soon be put to sleep again. As a
result, the process will always be running, consuming processing power and
raising the machine load. A threshold of 1KB assures that when the process
goes to sleep it will sleep for at least one tenth of a second, because it won't be
awakened before 1KB of data flows through the audio device. You can
recompile sad.c with a different threshold value to see how a small value keeps
the processor busy. Too big a value can result in jumpy audio, i.e. the sound
cuts in and out. The audio stream becomes jumpy because data continues to
flow while the kernel schedules execution of the process writing audio data.
The more heavily the computer is loaded, the more jumpy the audio is likely to
be; if several processes are contending for the processor, the one playing audio
might be awakened too late, after all pending data has been transferred to the
audio device. In addition to lowering the wakeup threshold, you can also cure
the problem by increasing the buffer size.

Naturally, the write device method is only half of the story; the other half is
performed by the interrupt handler.

The Interrupt Handler

In sad, audio samples are strobed out by a hardware interrupt, which is
reported to the processor every 125 microseconds. Each interrupt gets services
by an ISR (interrupt service routine, also called “interrupt handler”), written in C.
I won't go into the details of registering interrupt handlers here, as they have
already been described in other “Kernel Korner” columns.

Managing several thousand interrupts per second is a non-negligible load for
the processor (at least for slow processors like mine), so the driver only enables
interrupt reporting when the device is opened and disables it on the last close.

What I'd like to show here is how data flows to the A/D converter. The code is
quite easy, and the OBUFFER_THRESHOLD constant appears again, as
expected:

if (!OBUFFER_EMPTY) { /* send a sample */
 OUTBYTE(*((u8 *)otail++));
 if (otail == obuffer + OBUFFER_SIZE)
 otail = obuffer; /* wrap */
 if (OBUFFER_FREE > OBUFFER_THRESHOLD)
 wake_up_interruptible(&outq);

 return;
}
wake_up_interruptible(&closeq);

As usual, every code snippet introduces new questions; this time you might
wonder about OUTBYTE and closeq. The latter item is the main topic of the next
section, while OUTBYTE hides the line of code that pushes a data sample to the
D/A converter.

The macro is defined earlier in sad.c as follows:

#define OUTBYTE(b) outb(convert(b), sad_base)

Here, sad_base is the processor port used to send data to the parallel interface
(usually 0x378), and convert is a simple mathematical conversion that turns the
data byte as stored in the audio-file format to a linear 0-255 value, more suited
to the D/A converter.

Blocking Close

The close system call, like read and write, is one of those calls that can block.
For example, when you are done with the floppy drive, close blocks waiting for
any data to be flushed to the physical device. This behaviour can be verified by
running:

strace cp /boot/vmlinux /dev/fd0

Audio devices are somewhat similar to the floppy drive: a program writing
audio data closes the file after the last write system call. However, this means
only that data has been transferred to the output buffer, not that everything
has necessarily already flown to the loudspeaker. An implementation that
blocks on close can be helpful, when you want to do this:

cat file.au > /dev/sad && echo done

On the other hand, sometimes you'll prefer to stop playing sounds when the
process closes the device. For example, if you play the piano on your keyboard,
the sound should stop as soon as you raise the key, even if the program has
already pushed extra data to the output buffer.

For this reason, the sad module implements two device entry points, one that
blocks on close and one that doesn't block. Minor number 0 is the blocking
device and minor number 1 is the non-blocking one. The entry points in /dev
are created by the script that loads the module, included in the sad distribution:
/dev/sad is the one that blocks on close and /dev/sadnb is the non-blocking
one.

While real device drivers often offer configuration options (such as choosing
whether or not to block on close) through the ioctl system call, I chose to offer
different entry points in /dev, because this way I can use normal shell
redirection to perform my tasks, without the need to write C code to perform
the relevant ioctl call. The close method in sad.c, therefore, looks like the
following:

if (MINOR(inode->i_rdev)==0) /* wait */
 interruptible_sleep_on(&closeq);
else {
 unsigned long flags; /* drop data */
 save_flags(flags);
 cli(); ohead=otail;
 restore_flags(flags);
}
MOD_DEC_USE_COUNT;
if (!MOD_IN_USE)
 SAD_IRQOFF(); /* disable irq */
return;

Actually, there is a third possibility as far as close is concerned: go on playing in
the background as long as some data is there, even after the program has
closed the audio device. This approach is left as an exercise to the reader,
because I prefer having a chance to actively stop any device making noise.

Reading Data

Usually, a device can be read from as well as written to. Reading /dev/audio
usually returns digitized data from a microphone, but I haven't been asked to
provide this feature, and I have no real interest in hearing my voice.

When I built my first alpha release of the physical device, I found the need to
time the interrupt rate, in order to be sure it was close enough to the expected
8KHz. (In the alpha version, I used a variable resistor to fine-tune the frequency,
and I needed a way to check how it went.) The easiest solution that came to
mind was to use the clock of the host computer to measure the time lapses.

To this end, I modified the interrupt handler so that it would write timestamps
to an input buffer whenever the device was being read. The input buffer is a
circular buffer just like the output buffer described above.

The previous excerpt from sad_interrupt showed that after writing an audio
sample, the function returns to the caller. Any additional lines, therefore, are
only executed if no audio data is there, so the rest of the ISR has thus been
devoted to collecting timing information. This shows how I implemented “if
there is no pending output, deal with input” rather than the more correct “if
something is reading, give it some data.” This is acceptable as long as the device
is not meant to be read from and written to at the same time in a production
environment.

static struct timeval tv, tv_last;
unsigned long diff;
do_gettimeofday(&tv);
diff = (tv.tv_sec - tv_last.tv_sec) * 1000000 +
 (tv.tv_usec - tv_last.tv_usec);
tv_last = tv;
/* Write 16 bytes, assume bufsize
 * is a multiple of 16 */
ihead += sprintf((char *)ihead,"%15u\n",
 (int)diff);
if (ihead == ibuffer + IBUFFER_SIZE)
 ihead = ibuffer; /* wrap */
wake_up_interruptible(&inq); /*
 anyone reading? */

Printing the time difference between two samples has two advantages over
printing the absolute time: data is directly meaningful to humans without
resorting to external filters, and any overflow of the input buffer will have no
effect on the perceived results, other than the loss of a few samples.

Real tests show the reported interrupt rate is not as steady as one would hope.
Some system activities require you to disable interrupt reporting, and this
introduces some delay in the execution of the ISR routine. Nonetheless, an
oscillation of a few microseconds is perfectly acceptable and it is not perceived
in the resulting audio, which is not high-fidelity anyway.

It's interesting to note that disk activity can introduce some real distortion in
the audio stream, since servicing an IDE interrupt can take as long as two
milliseconds (on my system). The IDE driver disables interrupt reporting while
its own ISR is active, and the huge delay results in eight lost interrupts from the
parallel port, which in turn causes a noticeable distortion of the audio data
stream.

If you read from sad during disk activity, you'll see the long time intervals;
writing to the device produces very bad audio. The easy solution to this
problem is invoking

/sbin/hdparm -u 1 /dev/hda

before playing any audio. The command tells the disk drive not to disable
reporting interrupts while it is servicing its own. Refer to the hdparm

documentation to probe further.

Other Device Methods

The device driver interface offers other device methods in addition to the open/

close and read/write pairs. While none of them is critical to device operation, I
usually add a few lines of code to implement select and lseek. The former is
needed by those programs which multiplex several input/output channels or
use non-blocking operations to read and write data. Its role is quite needed if
you run real programs, and the implementation is straightforward enough that

I won't show it here. The implementation of lseek, on the other hand, consists
of the one line return -ESPIPE; and is meant to tell any program that tries to
lseek the device that this “is a pipe” (reported to user space as “Illegal seek”).

Related Stuff

My aversion to computer sound makes me a novice in the field, and I really
don't know anything about programs that play audio, or sites where audio files
can be retrieved. Although Linus Torvalds offered an interesting “I pronounce
Linux as Linux”, the file was not enough to test my device, and I needed to
generate some audio data. The result is the sad distribution includes a program
that plays sinusoidal waves, one that plays square waves and a not-so-good
piano implementation. These tools work with any /dev/audio you happen to
run and can be fun to play with, especially if you have a scope near your Linux
box.

All code for the sad program is available by anonymous download in the file
ftp.linuxjournal.com/pub/lj/listings/issue53/2997.tgz.

Alessandro Rubini tries to develop Open Source software/hardware for a living
and that's why he and other hackers founded “Prosa Srl”. He can be reached at
rubini@prosa.it, in addition to the usual addresses rubini@linux.it and
rubini@systemy.it.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/053/2997.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

MUP: Music Publisher

Bob van Poel

Issue #53, September 1998

Here's a look at notation editors for producing sheet music under Linux.

If you are a musician, you can only cry about the lack of music programs which
run under Linux. Yes, there are many CD players and sound editors. However,
when it comes to notation programs for producing printed sheet music, your
choices are severely limited. My search for notation editors has turned up three
choices: Rosegarden, TeX music systems and MUP (music publisher).

Rosegarden

The graphical program Rosegarden (http://www.bath.ac.uk/~masjpf/rose.html)
is a very interesting program which tries its best to do everything. It has a
notation editor which handles most of the normal editing functions, a MIDI
sequencer which will play music from the notation editor as well as record data
from a MIDI keyboard, and the ability to import MIDI files and convert them to
notation—sounds wonderful. Unfortunately, Rosegarden is a work in progress
and simply doesn't do all it is supposed to do, or does them awkwardly.

I have been unable to get the sequencer to work using my Gravis Ultra sound
card, and I find that the notation editor is tedious to use, since there are no
keyboard accelerators for entering note data. In addition, there is no easy way
to print music. Rosegarden does have the option of exporting files in MusicTeX,
OpusTeX and PMX (a preprocessor for MusiXTeX). I tried some of the
combinations, but was not impressed by the output.

The biggest problem with Rosegarden (and a lot of other music editors) is that
it works on the music as if it were a long string, which means changes to the
start of the music propagate to the end of the chart. For example, if in bar one
of a piece you have four quarter notes and you wish to change the first quarter
note to two eighth notes, you change the first quarter to an eighth, then insert
an eighth. When the first change is done, everything to the right of the edit

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

point is reformatted with the result that none of the music is now in the correct
measure. Of course, inserting the second eighth fixes this. If you have several
staves of music and you do a few edits, messing up the entire piece is much too
easy.

TeX

I did not spend much time with any of the various TeX music systems. I can
handle LaTeX for word processing, but the music variants seemed much too
complex to use. All are in a beta state, and none produced output which looked
finished to me.

MUP

MUP, at first glance, would probably be the last program to pick. However, after
a fair bit of testing, I have decided to use it. So far, I'm happy with my choice.
Quoting from the user's manual:

The music publisher program called MUP takes a text
file describing music as input, and generates
PostScript output for printing that music. The input file
can be created using your favorite text editor, or
generated from any other source, such as another
program. The input must be written in a special
language designed especially for describing music.

Unlike Rosegarden (and the MS Windows offerings), MUP does not operate in a
WYSIWYG environment. As a matter of fact, the MUP distribution doesn't even
have a means of editing music. MUP uses plain text files with the appearance of
source code as its input. Use vi, Emacs or whatever your flavor of editor is.
Process the file with MUP to create postscript, and finally, print the postscript
file. If you don't have a postscript printer, you'll need ghostscript to print things
out, and ghostview is handy for screen previews.

As an example of how MUP uses lines of text to describe a piece of music, here
are a few bars of music:

* 1: 8g;c+;e+;g+;g;b&c#+;g+;
* bar
* 1: 8g;b;d+;f+;4g+;g+;
* bar
* 1: 8g;c+;e+;g+;g;b&c#+;e+;
* bar
* 1: 4g+;b;c+;c#+;
* bar
* 1: 4d+;c+;a;f;
* bar

The 1: at the start of each line is the staff/voice indicator (in this example, it
refers to staff 1 and, since there is no additional argument, voice 1). Following
the staff/voice are the notes for the measure. The first measure has an eighth

note g, eighth note c, etc. The next measure has several eighth notes as well as
two quarter notes. At first this might seem to be a bit difficult to follow, but with
practice it quickly makes sense. (See Figure 1 for example output.)

Figure 1. Printed Music Image

A MUP score can contain up to 32 staves of music, each with two voices. Each
voice can have multiple notes (or chords), so complex arrangements are quite
possible. In addition to the actual staves, you can also include lyrics, musical
symbols and other appropriate items.

I started to use MUP when I was playing saxophone in a small combo. We all
play from fake-type music (chords, lyrics and the melody line). Since I'm not the
greatest sax player in the world and find it fairly hard to transpose from C to B
flat while sight reading, I started rewriting the C charts into B flat by hand. I find
anything needing a pen to be tedious, so I was inspired to try MUP. After doing
a few practice charts, I am now able to enter a page of one-line music with lyrics
in about an hour. Since MUP can produce MIDI files as well, I can create one in
the right key for practicing at home.

Flushed with the success of doing these simple charts, I decided to try a more
complex task. I also play in a 15-piece dance band. Most of the music we play is
arranged by our leader, but recently some of the members have been doing
some arranging as well. So, I decided to give it a try. My first arrangement of the
old standard “Fever” took the better part of two days to complete—arranging it
for 11 voices on 6 staves. We played it the other night and I was pleased—not
only was everyone impressed by the appearance of the charts, it didn't sound
bad either. The first page of the conductor's score is shown in Figure 2. The
complete MUP files for “Bye Bye Blackbird” and “Fever” are available by
anonymous download in the file ftp://ftp.linuxjournal.com/pub/lj/listings/
issue53/3056.tgz.

Figure 2. Conductor's Score

If you would like to see some of my other arrangements, I have posted them
along with a copy of this article at http://www.kootenay.com/~bvdpoel/.

I certainly don't have room in this short article to cover all the features of a
complex program like MUP. A few of the more useful items I've been using are
if/else statements to produce charts for different instruments, file includes to
read in my own “boiler plate”, and macros to make my input files easier to
create, read and revise.

https://secure2.linuxjournal.com/ljarchive/LJ/053/3056f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3056f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3056f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3056f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3056f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/053/3056f2.jpg

MUP comes complete with a well-written, 99-page user's manual in PostScript
(you'll have to print it out), as well as the same information in HTML format.
Equally impressive is the customer support available via e-mail. I've sent a
number of queries to the authors and have received courteous, timely replies
to each and every one.

MUP is not free. You can download a working copy of the program, the source
code and the manual from http://www.Arkkra.com/. In addition to the pre-
compiled package for Linux, binary packages exist for other x86 UNIX systems
capable of running ELF x86 binaries and a MS-DOS package. Also, the complete,
commented source code is also available. This source should, according to the
authors, compile on any platform with a C compiler. The Arkkra home site also
has a pointer to a Macintosh port—this cross-platform support is a nice bonus
as part of this excellent package. The program is a complete working copy—
however, it prints a “this is an unregistered copy” watermark on all pages of the
score. MUP registration is only $29 US; paying this gives you a license which
turns off the marks. This is a fairly low price to pay for such a well thought out
program.

This article was first published in Issue 28 of LinuxGazette.com, an on-line e-
zine formerly published by Linux Journal.

Bob van der Poel (bvdpoel@kootenay.com) started using computers in 1982
when he purchased a Radio Shack Color Computer complete with 32KB of
memory and a cassette tape recorder for storing programs and data. He has
written and marketed many programs for the OS9 operating system. He lives
with his wife, two cats and Tora (the wonder dog) on a small acreage in British
Columbia, Canada spending his time gardening, practicing sax or just having
fun.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:bvdpoel@kootenay.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #53, September 1998

Our experts answer your technical questions.

HP and Matrox

I have an HP Pavilion that comes with an on-board ATI video card. I now have a
Matrox Mystic in the computer, and when I try to run X, I get the message
“configured devices not found”. I think the HP is not recognizing the Matrox, but
with the way the HP is set up the on-board disables itself when you install
another video card. How can I make Red Hat 5 work correctly? Thanks a bunch.

—Fred Fredrickson, Red Hat 5.0

Sounds like the X server is still configured for the on-board video controller,
which you say is now disabled. X won't find your new video card automatically.
Try reconfiguring your X server for the new card.

—Scott Maxwell, s-max@pacbell.net

Login Names

Would it be possible to give a user a login name which consists of more than
eight characters? For example, “fujigaki” and “mayuzumi” are quite popular
family names in Japan. We wish to give them “hfujigaki” and “cmayuzumi”
where the “h” and “c” are the first characters of their first names. In some UNIX
systems, it is possible to do that. On the other hand, the default adduser
command does not seem to support this extension. It would be great if this
could be done.

—Tokuzo Shimada, Slackware 3.10

The latest glibc libraries (found in Red Hat Linux) allow a user name of up to 32
characters. The adduser (as well as other shadow utilities) script you've

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

mentioned does indeed have a limitation, but it should not be that hard to
modify it or create your own.

—Mario Bello Bittencourt, mneto@buriti.com.br

Space Problem with X

Whenever I try to start X, I get an error message stating there isn't enough
space in the /tmp directory. I've removed everything from that directory, but I
still get the message. Is there any way to increase the size of this directory or at
least force X to run? Thanks.

—Arnold Kelly, Caldera 1.2

You don't need to make space in the /tmp directory only—you can also free up
space elsewhere on the same file system. On my computer (which is also
running low on space), df reports the following:

% df /tmp
Filesystem 1024-blocks Used Available Capacity
Mounted on /dev/hda2 495746 468014 2129 100% /

This says that my /tmp directory is on the /dev/hda2 file system. Try the same
with other directories, making space where you can in other directories on the
same file system. In particular, I'd suggest checking /var/log, where your system
logs are kept.

—Scott Maxwell, s-max@pacbell.net

Recent Hardware

Is there an up-to-date list of supported, recent hardware? How can I find out if
Linux will run on a new computer configuration?

Your answer will determine whether I give my 486 to my brother-in-law or keep
it as a Linux box.

Thanks for your time.

—Al Rivera, Slackware 3.4

You should check the Hardware-HOWTO on all the LDP mirror sites. However,
I'm pretty suspicious of recent hardware; hardware manufacturers are always
creating new stuff, and they rarely offer a Linux driver for their products. Linux
support usually arrives later than the hardware product, but unless you play
video games, you never need the processing power they're trying to sell you.

I prefer to buy my hardware from Linux-aware computer shops: that's the only
way to be sure I won't be throwing the whole box in the wastebasket.

—Alessandro Rubini, rubini@linux.it

Printing Unformatted Text

I have an HP Laserjet 2p. The installation of Linux went well but when using lpr
to print out a file, I get approximately three lines of unformatted text. At other
times, I get no output at all. The entry in the printcap file that refers to the
Laserjet yields two names: lp and hdj:\. When hdj is entered as printer name,
the system states that device is unknown. When the -P option is used, printer
problems persist, i.e., they are unchanged. I am a Linux novice and I could use
some help. Thanks for your input.

—Dewey

This happens because the printer uses the DOS convention for newlines: \r\n
(return, newline), while UNIX text has only a \n at the end of each line.

You should either filter the text through unix2dos (or through sed) or avoid
sending unformatted text to the printer. I use the a2ps (ASCII to PostScript)
filter and then ghostscript to convert PostScript to a PCL print file.

Setting up non-PostScript printers as if they were PostScript is quite easy with
modern distributions. Look for the “Magic Filters” package and install it.

—Alessandro Rubini, rubini@linux.it

Recognizing New Memory

I have upgraded my PC's memory from 16MB to 72MB. Although the BIOS and
Win95 recognize the extra memory, Linux appears not to see it. Using utilities
such as free and top show a total of only 16MB of available memory. My PC still
performs as it did when I had only 16MB installed.

Is there something I must do for Linux to recognize the new memory?

—George Tankoski, Slackware 1.3.2

LILO's configuration file may be explicitly setting the available memory to
16MB. To see if this is true, check the file /etc/lilo.conf for a line that looks like
this:

append="mem=16m"

As root, change this line to read:

append="mem=72m"

Then, run /sbin/lilo (also as root) to make LILO reread the edited configuration
file and reboot.

If you don't see the “16m” line in /etc/lilo.conf, back up your system, then try
rebooting and typing the “72m” line directly at the LILO prompt. If your system
boots and appears to be stable, you can then permanently enshrine the “72m”
line in /etc/lilo.conf.

—Scott Maxwell, s-max@pacbell.net

Modem Connection to NT

I have a modem connection at work on a MS Windows NT/4 server. When I try
to connect with PPP, I never get the login prompt. Once the dial up is done
(using seyon), the connection hangs up. I guess NT is using RAS rather than the
regular PPP. Do you know any way to set up the connection with NT?

Thanks for your help.

—Jacques Milman, Red Hat 4.1

The NT server uses ms-auth-chap authentication. Check out your pppd
configuration to be sure it is compiled with ms-auth-chap crypted
authentication.

Here is an example of what can happen if your pppd does not include ms-auth-
chap support—server asks for ms-auth-chap:

pppd[164]: rcvd [LCP ConfReq id=0x0 <asyncmap 0x0>
<auth chap 80> <magic 0x307f> <pcomp> <accomp>]

pppd rejects the request:

pppd[164]: sent [LCP ConfRej id=0x0 <auth chap 80>]

so NT closes the line.

—Pierre Ficheux, pierre@rd.lectra.fr

Boot Problems

Let me start from the beginning. One day I booted my computer and received a
message saying “remove and insert new disk” or something similar. I played

around with the CMOS setting and checked the hardware to make sure no
wires had fallen out. I ended up formatting my c: disk, and up until this time, I
could still use Linux. I received the same message, but I could load DOS from a
boot disk.

The next time I tried to load Linux at the LILO prompt, it said “loading........” and
hung. I then tried to use a Linux boot disk and got the message “cannot initiate
console”.

I am finding this to be a big problem, as I cannot access the files on either my
Windows 95 partition or my Linux partition. If you can give me any help with
fixing my Linux problem, I will be very grateful.

—Jamie Gamble, Slackware 3.2

The process of booting Linux on the PC platform is a bit intricate, mainly
because of the peculiarities of the platform.

LILO loads the kernel using a list of disk blocks it built beforehand (when you
ran /sbin/lilo, the map installer). After loading the blocks, it jumps to the kernel
image; but if you moved the kernel after running /sbin/lilo, the loader will jump
to nonsense program code, thus hanging the system.

Boot floppies, on the other hand, come in different flavours. The message
“cannot open an initial console” means the kernel was loaded just right; it
mounted a root file system, but couldn't open /dev/tty1 or /dev/ttyS0. I've seen
this happen when mounting the /home partition as the root file system (there
was no /dev directory).

Restoring a Linux installation is not trivial, especially if you have no other Linux
box around. Short of finding a local Linuxer, try the /usr/doc/lilo*/README or
my article “Booting the Kernel” in the June 1997 LJ.

—Alessandro Rubini, rubini@linux.it

Memory Exhausted

When I'm recompiling my kernel, I get a virtual memory exhausted error. It
seems to happen when the compile is around the floppy.o section. When I use
a different boot kernel (bare), it gives me a fatal signal 13.

—Wes Horn, Slackware 3.2

There are two common causes of this kind of problem.

1. Hardware; perhaps a bad cache or RAM
2. Out of swap space

You did not specify how much RAM nor how much swap space you have.
Compiling the kernel is a CPU/memory intensive task, so if you do not have
enough physical memory, your system will start using the swap space. If this
swap is used up, strange things, such as the one you mentioned, can happen.

—Mario Bello Bittencourt, mneto@buriti.com.br

Metro-X Problem

Red Hat 5.0 comes bundled with Metro-X, a high-powered graphics server, and I
have had a lot of problems getting it to run. A friend of mine running Linux said
there is a bug in Red Hat 5.0 that prevents the necessary symbolic link from
being created. I tried to correct it using the following command:

rm /etc/X11/X ln -s ../../usr/X11R6/bin/Xmetro \
 /etc/X11/X

This didn't solve the problem. When I try to start Metro-X my screen goes blank,
and a few seconds later, the prompt returns with no error messages.

Can you help me solve this problem? Your help is greatly appreciated.

—Tim Perry, Red Hat 5.0

If that is exactly what you typed, you missed something crucial: a semicolon (;)
before the ln (this separates the rm command from the ln command). Worse,
you also removed the Xmetro binary!

To fix it, use rpm or glint to reinstall the Metro-X package, then re-run the
command with a semicolon before the ln.

—Scott Maxwell, s-max@pacbell.net

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/053/toc053.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	WWWsmith
	Columns
	Developing Imaging Applications with XIE
	Syd Logan
	Linux and XIE
	What is XIE?
	Image Transmission
	Image Enhancement and Manipulation
	Photoflos
	Techniques
	Import Elements
	Process Elements
	Handling Image Data
	An Example: Employee Database
	The Complete Example Code

	Open Inventor
	Robert Hartley
	What is in it?
	Where did it come from?
	What is the VRML connection?
	What can I do with it?
	How does it work?
	What else do I need?
	“Hello Cone”, an Inventor Sample
	Inventor Manipulators
	Editing Nodes
	Hooking Up New Hardware
	Things to Add
	Summary

	LibGGI: Yet Another Graphics API
	Andreas Beck
	Portability
	Table 1. LibGGI Platforms
	Simplicity: An Example
	Graphics Context
	Events
	Advanced LibGGI Usage
	3-D, Movies, Fonts
	Transparent Acceleration and Multi-API
	Table 2. Multiple APIs
	Performance Considerations
	Available Applications

	Porting SGI Audio Applications to Linux
	David Phillips
	Richard Kent
	Background
	Preliminaries
	Starting Out
	Scouting Around
	Porting Begins
	Releasing the Packages
	Further Development
	Final Thoughts
	Technical Considerations
	Audio and Audiofile Libraries
	Compiler Differences
	Variable Argument Lists

	Visualizing with VTK
	James C. Moore
	Overview
	Using VTK
	Obtaining VTK
	Compiling VTK

	Porting MS-DOS Graphics Applications
	Jawed Karim
	Copying a Buffer to Video
	Waiting for the VGA Retrace
	Setting the VGA Palette
	Compiling

	A Tale of DXPC: Differential X Protocol Compression
	Justin Gaither
	Install
	Conclusion

	Chess Software for Linux
	Jason Kroll
	Crafty
	Phalanx
	GNU Chess
	Chess on the Internet
	Conclusion

	LJ Interviews LDP's Greg Hankins
	Marjorie Richardson

	Migrating to Linux, Part 2
	Norman M. Jacobowitz
	Jim Hebert
	Do You Have to Become an Expert?
	The Tasks at Hand
	What is System Administration?
	Why Bother with Backups?
	Boot/Root Disks
	Getting Stuff Done
	Applications ... Applications ... Applications
...
	Sharing Data
	Until Next Time

	SockMail
	Noah Yasskin
	The Digital Mail Room
	Sockem Software: A Java Start-up
	Sign Me Up
	Listserv and Majordomo
	Target Market, Target Mail
	100% Java Installation
	The Server
	The Clients
	Built-in Intelligence
	The Potential for Linux and Java
	Looking Forward
	The Future of E-mail

	UNIX Power Tools
	Samuel Ockman

	Managing AFS: Andrew File System
	Daniel Lazenby
	How This Book Can Help
	The Book's Layout
	Why Consider AFS?
	Linux AFS Port Availability

	Discover Linux
	Marjorie Richardson

	Updating Pages Automatically
	Reuven M. Lerner
	Pointing with CGI
	Automatically Copying Pages with cron
	Using Symbolic Links
	Publishing Daily Items
	Using Databases

	Letters to the Editor
	Various
	BTS Issue 50
	Linux and Compaq ProLiant 2000 and SMART
	Open Source vs. Free Software
	PPPui
	Sybase and Linux
	PPPui Alternative
	Caldera Review—Not!
	Summit Article
	Small Error
	Concerning LTE Issue 50
	BTS Comment

	How Many Distributions?
	Marjorie Richardson
	Next Month
	Outsourcing Subscriptions
	Upcoming Events

	USENIX 1998
	Aaron Mauck
	Tutorials
	Vendor Expo
	BOFs and Speeches
	Terminal Room
	Summary

	A Little Devil Called tr
	Hans de Vreught

	Training on a Token Ring Network
	Charles Kitsuki

	New Products
	Amy Kukuk
	NetWinder
	CommuniGate Pro Server 2.0 Beta
	J Street Mailer Release Two
	InterBase 4.0 for Red Hat Linux 4.2
	Metro-X 4.3

	Driving One's Own Audio Device
	Alessandro Rubini
	The Underlying Hardware
	Writing Data
	The Interrupt Handler
	Blocking Close
	Reading Data
	Other Device Methods
	Related Stuff

	MUP: Music Publisher
	Bob van Poel
	Rosegarden
	TeX
	MUP

	Best of Technical Support
	Various
	HP and Matrox
	Login Names
	Space Problem with X
	Recent Hardware
	Printing Unformatted Text
	Recognizing New Memory
	Modem Connection to NT
	Boot Problems
	Memory Exhausted
	Metro-X Problem

